For the examination, choose 2 of the following:

1. Write a function \(\text{drop} :: \text{Int} \rightarrow \text{RList} \ a \rightarrow \text{RList} \ a \) that deletes the first \(n \) elements for a binary random-access list. Your function should run in \(O(\log n) \) time. (From *Purely Functional Data Structures* by Chris Okasaki, 1998.)

2. Reimplement binary random-access lists using a sparse representation such as:

   ```hs
   data Tree a = Leaf a | Node Int (Tree a) (Tree a)
   type RList a = [Tree a]
   ```

 (From *Purely Functional Data Structures* by Chris Okasaki, 1998.)

3. Implement \(\text{drop} \) as specified above for skew binary random-access lists.