A Blessing and a Curse

- The **BIG** advantage of pure functional programming is
 - **“everything is explicit;”**
 i.e., flow of data manifest, no side effects.
 Makes it a lot easier to understand large programs.
- The **BIG** problem with pure functional programming is
 - **“everything is explicit.”**
 Can add a lot of clutter, make it hard to maintain code.

Conundrum

“Shall I be pure or impure?” (Wadler, 1992)

- Absence of effects
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.
- Effects (state, exceptions, ...) can
 - help making code concise
 - facilitate maintenance
 - improve the efficiency.

Example: A Compiler Fragment (1)

Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) { x = n; }
}
```

In the body of `set`, the one applied occurrence of

- `x` refers to the **instance variable** `x`
- `n` refers to the **argument** `n`.
Consider an AST `Exp` for a simple expression language. `Exp` is a parameterized type: the type parameter `a` allows variables to be annotated with an attribute of type `a`.

```haskell
data Exp a = LitInt Int | Var Id a | UnOpApp UnOp (Exp a) | BinOpApp BinOp (Exp a) (Exp a) | If (Exp a) (Exp a) (Exp a) | Let [(Id, Type, Exp a)] (Exp a)
```

Example: A Compiler Fragment (3)

Example: The following code fragment

```
let int x = 7 in x + 35
```

would be represented like this (before identification):

```
Let ["x", IntType, LitInt 7] (BinOpApp Plus (Var "x" ()) (LitInt 35))
```

Example: Before Identification

```
let int x = 7 in x + 35
```

After identification:

```
Let ["x", IntType, LitInt 7] (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: A Compiler Fragment (4)

Goals of the **identification** phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration. I.e., map unannotated AST `Exp ()` to annotated AST `Exp Attr`.
- Report conflicting variable definitions and undefined variables.

```
identification :: Exp () -> (Exp Attr, [ErrorMsg])
```

Example: A Compiler Fragment (5)
Example: A Compiler Fragment (6)

`enterVar` inserts a variable at the given scope level and of the given type into an environment.
- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the resulting environment is returned.
- Otherwise an *error message* is returned.

```
enterVar :: Id -> Int -> Type -> Env
        -> Either Env ErrorMsg
```

Example: A Compiler Fragment (7)

Functions that do the real work:

```
identAux ::
        Int -> Env -> Exp ()
        -> (Exp Attr, [ErrorMsg])

identDefs ::
        Int -> Env -> [(Id, Type, Exp ())]
        -> ([(Id, Type, Exp Attr)],
            Env,
            [ErrorMsg])
```

Example: A Compiler Fragment (8)

```
identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) = 
    ((i,t,e') : ds'', env'' , ms1++ms2++ms3)
    where 
        (e', ms1) = identAux l env e 
        (env'', ms2) = 
            case enterVar i l t env of 
                Left env' -> (env', []) 
                Right m -> (env, [m]) 
        (ds'', env'', ms3) = 
            identDefs l env' ds
```

Example: A Compiler Fragment (9)

Error checking and collection of error messages arguably added a lot of *clutter*. The *core* of the algorithm is this:

```
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) = 
    ((i,t,e') : ds'', env'')
    where 
        e' = identAux l env e 
        env' = enterVar i l t env 
        (ds'', env'') = identDefs l env' ds
```

Errors are just a *side effect*.
Monads bridge the gap: allow effectful programming in a pure setting.

Key idea: Computational types: an object of type \(M A \) denotes a computation of an object of type \(A \).

Thus we shall be both pure and impure, whatever takes our fancy!

Monads originated in Category Theory.

Adapted by
- Moggi for structuring denotational semantics
- Wadler for structuring functional programs

Effectful computations
Identifying a common pattern
Monads as a design pattern

Example 1: A Simple Evaluator

```haskell
data Exp = Lit Integer
  | Add Exp Exp
  | Sub Exp Exp
  | Mul Exp Exp
  | Div Exp Exp

eval :: Exp -> Int
eval (Lit n) = neval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2
```
Making the Evaluator Safe (1)

```haskell
data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
  case safeEval e1 of
    Nothing -> Nothing
    Just n1 ->
      case safeEval e2 of
        Nothing -> Nothing
        Just n2 -> Just (n1 + n2)
```

Making the Evaluator Safe (2)

```haskell
safeEval (Sub e1 e2) =
  case safeEval e1 of
    Nothing -> Nothing
    Just n1 ->
      case safeEval e2 of
        Nothing -> Nothing
        Just n2 -> Just (n1 - n2)
```

Making the Evaluator Safe (3)

```haskell
safeEval (Mul e1 e2) =
  case safeEval e1 of
    Nothing -> Nothing
    Just n1 ->
      case safeEval e2 of
        Nothing -> Nothing
        Just n2 -> Just (n1 * n2)
```

Making the Evaluator Safe (4)

```haskell
safeEval (Div e1 e2) =
  case safeEval e1 of
    Nothing -> Nothing
    Just n1 ->
      case safeEval e2 of
        Nothing -> Nothing
        Just n2 ->
          if n2 == 0 then Nothing
          else Just (n1 `div` n2)
```
Any Common Pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- **Sequencing** of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.

Sequencing Evaluations

evalSeq :: Maybe Integer
 -> (Integer -> Maybe Integer)
 -> Maybe Integer
evalSeq ma f =
 case ma of
 Nothing -> Nothing
 Just a -> f a

Exercise 1: Refactoring safeEval

Rewrite safeEval, case Add, using evalSeq:

```haskell
safeEval (Add e1 e2) =
   case safeEval e1 of
      Nothing -> Nothing
      Just n1 ->
         case safeEval e2 of
            Nothing -> Nothing
            Just n2 -> Just (n1 + n2)
```

evalSeq ma f =
 case ma of
 Nothing -> Nothing
 Just a -> f a

Exercise 1: Solution

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
   evalSeq (safeEval e1)
      (\n1 -> evalSeq (safeEval e2)
      (\n2 -> Just (n1 + n2)))
```

Or

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
   safeEval e1 'evalSeq' (\n1 ->
      safeEval e2 'evalSeq' (\n2 ->
         Just (n1 + n2)))
```
Aside: Scope Rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```haskell
safeEval :: Exp -> Maybe Integer
...
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 + n2)
...
```

Refactored Safe Evaluator (1)

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 + n2)
safeEval (Sub e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 - n2)
```

Refactored Safe Evaluator (2)

```haskell
safeEval (Mul e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 * n2)
safeEval (Div e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  if n2 == 0
    then Nothing
    else Just (n1 `div` n2)
```

Inlining evalSeq (1)

```haskell
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 + n2)
= case (safeEval e1) of
  Nothing -> Nothing
  Just a -> (\n1 -> safeEval e2 ...) a
```
Inlining `evalSeq` (2)

```haskell
safeEval (Add e1 e2) =
  case (safeEval e1) of
    Nothing -> Nothing
    Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)
```

Inlining `evalSeq` (3)

```haskell
safeEval (Add e1 e2) =
  case (safeEval e1) of
    Nothing -> Nothing
    Just n1 -> case safeEval e2 of
      Nothing -> Nothing
      Just n2 -> (Just n1 + n2)
```

Maybe Viewed as a Computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. *failure is an effect*, implicitly affecting subsequent computations.
- Let’s generalize and adopt names reflecting our intentions.

Successful computation of a value:

```haskell
mbReturn :: a -> Maybe a
mbReturn = Just
```

Sequencing of possibly failing computations:

```haskell
mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
mbSeq ma f =
  case ma of
    Nothing -> Nothing
    Just a -> f a
```
Maybe Viewed as a Computation (3)

Failing computation:

```haskell
mbFail :: Maybe a
mbFail = Nothing
```

The Safe Evaluator Revisited

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add el e2) =
    safeEval el `mbSeq` \n1 ->
    safeEval e2 `mbSeq` \n2 ->
    mbReturn (n1 + n2)
...  
safeEval (Div el e2) =
    safeEval el `mbSeq` \n1 ->
    safeEval e2 `mbSeq` \n2 ->
    if n2 == 0 then mbFail
    else mbReturn (n1 `div` n2))
```

Example 2: Numbering Trees

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
  where
    ntAux :: Tree a -> Int -> (Tree Int,Int)
    ntAux (Leaf _) n = (Leaf n, n+1)
    ntAux (Node t1 t2) n =
      let (t1', n') = ntAux t1 n
      in (t1', n') = ntAux t2 n'
      in (Node t1' t2', n'')
```

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?
Stateful Computations (1)

- A **stateful computation** consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:
 \[
 \text{type } S \ a = \text{Int} \to (a, \text{Int})
 \]
 (Only Int state for the sake of simplicity.)
- A value (function) of type \(S \ a \) can now be viewed as denoting a stateful computation computing a value of type \(a \).

Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. **state updating is an effect**, implicitly affecting subsequent computations.
 (As we would expect.)

Stateful Computations (3)

Computation of a value without changing the state (For ref.: \(S \ a = \text{Int} \to (a, \text{Int}) \)):

\[
\begin{align*}
\text{sReturn} & : a \to S \ a \\
\text{sReturn} \ a & = \backslash n \to (a, n)
\end{align*}
\]

Sequencing of stateful computations:

\[
\begin{align*}
\text{sSeq} & : S \ a \to (a \to S b) \to S b \\
sSeq \ sa \ f & = \backslash n \to \\
& \quad \text{let } (a, n') = sa \ n \\
& \quad \text{in } f \ a \ n'
\end{align*}
\]

Stateful Computations (4)

Reading and incrementing the state (For ref.: \(S \ a = \text{Int} \to (a, \text{Int}) \)):

\[
\begin{align*}
\text{sInc} & : S \ Int \\
\text{sInc} & = \backslash n \to (n, n + 1)
\end{align*}
\]
Numbering trees revisited

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
  where
    ntAux :: Tree a -> S (Tree Int)
    ntAux (Leaf _) = 
      sInc `sSeq` \n -> sReturn (Leaf n)
    ntAux (Node t1 t2) = 
      ntAux t1 `sSeq` \t1' ->
      ntAux t2 `sSeq` \t2' ->
      sReturn (Node t1' t2')
```

Observations

- The “plumbing” has been captured by the abstractions.
- In particular:
 - counter no longer manipulated directly
 - no longer any risk of “passing on” the wrong version of the counter!

Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a **MONAD**.

Monads in Functional Programming

A monad is represented by:

- A type constructor

 \[M :: * \rightarrow * \]

 \(M \ T \) represents computations of a value of type \(T \).

- A polymorphic function

 \[\text{return} :: a \rightarrow M a \]

 for lifting a value to a computation.

- A polymorphic function

 \[(\Rightarrow) :: M a \rightarrow (a \rightarrow M b) \rightarrow M b \]

 for sequencing computations.
Exercise 2: join and fmap

Equivalently, the notion of a monad can be captured through the following functions:

\[
\text{return} :: a \to M a \\
\text{join} :: (M (M a)) \to M a \\
\text{fmap} :: (a \to b) \to (M a \to M b)
\]

join “flattens” a computation, fmap “lifts” a function to map computations to computations. Define \(\text{join}\) and \(\text{fmap}\) in terms of \((_________)\), and \((_________)\) in terms of \(\text{join}\) and \(\text{fmap}\).

\[
(_________) :: M a \to (a \to M b) \to M b
\]

Exercise 2: Solution

\[
\text{join} :: M (M a) \to M a \\
\text{join} \ mm = \ mm \ >>\ >>\ id
\]

\[
\text{fmap} :: (a \to b) \to M a \to M b \\
\text{fmap} \ f \ m = \ m \ >>\ >>\ \lambda a \to \text{return} \ (f \ a)
\]

Or:

\[
\text{fmap} :: (a \to b) \to M a \to M b \\
\text{fmap} \ f \ m = \ m \ >>\ >>\ \text{return} \ . \ f
\]

\[
(_________) :: M a \to (a \to M b) \to M b \\
m \ >>\ >>\ f = \ \text{join} \ (\text{fmap} \ f \ m)
\]

Monad laws

Additionally, the following laws must be satisfied:

\[
\text{return} \ x >>= f = f \ x \\
(m >>= \text{return}) = m \\
(m >>= f) >>= g = m >>= (\lambda x \to f \ x >>= g)
\]

I.e., return is the right and left identity for \(>>=\), and \(>>=\) is associative.

Exercise 3: The Identity Monad

The Identity Monad can be understood as representing effect-free computations:

\[
\text{type} \ I \ a = a
\]

1. Provide suitable definitions of \(\text{return}\) and \(>>=\).
2. Verify that the monad laws hold for your definitions.
Exercise 3: Solution

```haskell
return :: a -> I
return = id

(>>=) :: I a -> (a -> I b) -> I b
m >>= f = f m
-- or: (>>=) = flip ($)```

Simple calculations verify the laws, e.g.:

```
return x >>= f = id x >>= f
= x >>= f
= f x
```

Monads in Category Theory (1)

The notion of a monad originated in Category Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

- **Kleisli triple/triple in extension form**: Most closely related to the >>= version:

  A **Kleisli triple** over a category \( \mathcal{C} \) is a triple \((T, \eta, _\star)\), where \( T : \mathcal{C} \to \mathcal{C} \) is a functor, \( \eta : \text{id}_{\mathcal{C}} \to T \) and \( \mu : T^2 \to T \) are natural transformations.

  (Additionally, some laws must be satisfied.)

Monads in Category Theory (2)

- **Monad/triple in monoid form**: More akin to the join/fmap version:

  A **monad** over a category \( \mathcal{C} \) is a triple \((T, \eta, \mu)\), where \( T : \mathcal{C} \to \mathcal{C} \) is a functor, \( \eta : \text{id}_{\mathcal{C}} \to T \) and \( \mu : T^2 \to T \) are natural transformations.

  (Additionally, some commuting diagrams must be satisfied.)

Reading

- All About Monads. http://www.haskell.org/all_about_monads