A Blessing and a Curse

- The **BIG** advantage of **pure** functional programming is “everything is explicit;” i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.
- The **BIG** problem with **pure** functional programming is “everything is explicit.” Can add a lot of clutter, make it hard to maintain code.

Conundrum

“**Shall I be pure or impure?**” (Wadler, 1992)

- Absence of effects
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.
- Effects (state, exceptions, . . .) can
 - help making code concise
 - facilitate maintenance
 - improve the efficiency.

Example: A Compiler Fragment (1)

Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) { x = n; }
}
```

In the body of `set`, the one applied occurrence of
- `x` refers to the **instance variable** `x`
- `n` refers to the **argument** `n`.

Example: A Compiler Fragment (2)

Consider an AST `Exp` for a simple expression language. `Exp` is a parameterized type: the **type parameter** `a` allows variables to be annotated with an attribute of type `a`.

```haskell
data Exp a = LitInt Int | Var Id | UnOpApp UnOp (Exp a) | BinOpApp BinOp (Exp a) (Exp a) | If (Exp a) (Exp a) (Exp a) | Let [((Id, Type, Exp a)) (Exp a)]
```

Example: A Compiler Fragment (3)

Example: The following code fragment

```haskell
let int x = 7 in x + 35
```

would be represented like this (before identification):

```haskell
let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: A Compiler Fragment (4)

Goals of the **identification** phase:
- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration.
 i.e., map unannotated AST `Exp ()` to annotated AST `Exp Attr`.
- Report conflicting variable definitions and undefined variables.

```haskell
identification :: Exp () -> (Exp Attr, [ErrorMsg])
```

Example: A Compiler Fragment (5)

Example: Before Identification

```haskell
let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" ()) (LitInt 35))
```

After identification:

```haskell
let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: A Compiler Fragment (6)

`enterVar` inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the **resulting environment** is returned.
- Otherwise an **error message** is returned.

```haskell
enterVar :: Id -> Int -> Type -> Env
    -> Either Env ErrorMsg
```
Example: A Compiler Fragment (7)

Functions that do the real work:

```haskell
identAux ::
    Int -> Env -> Exp ()
    -> (Exp Attr, [ErrorMsg])
```

```haskell
identDefs ::
    Int -> Env -> [(Id, Type, Exp ())]-> ([Id, Type, Exp Attr],
    Env, [ErrorMsg])
```

Example: A Compiler Fragment (8)

```haskell
identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
    (i,t,e') : ds', env'', ms1++ms2++ms3)
where
e' = identAux l env e
(env', ms2) =
    case enterVar i l t env of
      Left env' -> (env', [])
      Right m -> (env', [m])
(ds', env'', ms3) =
    identDefs l env' ds
```

Example: A Compiler Fragment (9)

Error checking and collection of error messages arguably added a lot of clutter. The core of the algorithm is this:

```haskell
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
    (i,t,e') : ds', env'')
where
e' = identAux l env e
(env' = enterVar i l t env
(ds', env'') = identDefs l env' ds
```

Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an object of type A.
- Thus we shall be both pure and impure, whatever takes your fancy!
- Monads originated in Category Theory.
- Adapted by
 - Moggi for structuring denotational semantics
 - Wedler for structuring functional programs

Making the Evaluator Safe (1)

```haskell
data Maybe a = Nothing | Just a
```

```haskell
safeEval :: Exp -> Maybe Integer
```

```haskell
safeEval (Sub e1 e2) =
    case safeEval e1 of
      Nothing -> Nothing
      Just n1 ->
        case safeEval e2 of
          Nothing -> Nothing
          Just n2 -> Just (n1 - n2)
```

Answer to Conundrum: Monads (2)

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of real effects such as
 - I/O
 - mutable state.

Making the Evaluator Safe (2)

```haskell
safeEval (Sub e1 e2) =
    case safeEval e1 of
      Nothing -> Nothing
      Just n1 ->
        case safeEval e2 of
          Nothing -> Nothing
          Just n2 -> Just (n1 - n2)
```

Example 1: A Simple Evaluator

```haskell
data Exp = Lit Integer
    | Add Exp Exp
    | Sub Exp Exp
    | Mul Exp Exp
    | Div Exp Exp
```

```haskell
eval :: Exp -> Int
eval (Lit n) = neval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2
```

Pragmatic introduction to monads:

- Effectful computations
- Identifying a common pattern
- Monads as a design pattern

This Lecture

LiU-FP2010 Part II: Lecture 4 – p.10/52

LiU-FP2010 Part II: Lecture 4 – p.11/52

LiU-FP2010 Part II: Lecture 4 – p.12/52

LiU-FP2010 Part II: Lecture 4 – p.13/52

LiU-FP2010 Part II: Lecture 4 – p.14/52

LiU-FP2010 Part II: Lecture 4 – p.15/52

LiU-FP2010 Part II: Lecture 4 – p.16/52

LiU-FP2010 Part II: Lecture 4 – p.17/52

LiU-FP2010 Part II: Lecture 4 – p.18/52
Making the Evaluator Safe (3)

```
safeEval (Mult e1 e2) =
  case safeEval e1 of
    Nothing  -> Nothing
    Just n1  ->
      case safeEval e2 of
        Nothing  -> Nothing
        Just n2  -> Just (n1 * n2)
```

Making the Evaluator Safe (4)

```
safeEval (Div e1 e2) =
  case safeEval e1 of
    Nothing  -> Nothing
    Just n1  ->
      case safeEval e2 of
        Nothing  -> Nothing
        Just n2  ->
          if n2 == 0
              then Nothing
              else Just (n1 `div` n2)
```

Sequencing Evaluations

```
evalSeq :: Maybe Integer -> (Integer -> Maybe Integer) -> Maybe Integer
  -> Maybe Integer
evalSeq ma f =
  case ma of
    Nothing  -> Nothing
    Just a   -> f a
```

Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
- **Sequencing** of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.

Exercise 1: Refactoring safeEval

Rewrite `safeEval`, case `Add`, using `evalSeq`:

```
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq`
    \n1 ->
    safeEval e2 `evalSeq`
    \n2 ->
    Just (n1 + n2)
```

Refactored Safe Evaluator (1)

```
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq```
    \n1 ->
    safeEval e2 `evalSeq```
    \n2 ->
    Just (n1 + n2)
```

Aside: Scope Rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
    safeEval e2 `evalSeq` \n2 ->
    Just (n1 + n2)
```

Exercise 1: Solution

```
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
  safeEval (safeEval e1)
    (\n1 -> evalSeq (safeEval e2)
      (\n2 -> Just (n1 + n2))))
```

Refactored Safe Evaluator (2)

```
safeEval (Mul e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
    safeEval e2 `evalSeq` \n2 ->
    Just (n1 * n2)
```

```
Inlining evalSeq (1)

safeEval (Add e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
    Just (n1 + n2) =
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just a -> {\n1 -> safeEval e2 ...} a

Inlining evalSeq (2)

safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)

Inlining evalSeq (3)

safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> case safeEval e2 of
            Nothing -> Nothing
            Just a -> {\n2 -> ...} a

Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as denoting a computation of a value of type a that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

Maybe Viewed as a Computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe ambReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
mbSeq ma f =
    case ma of
        Nothing -> Nothing
        Just a -> f a

Maybe Viewed as a Computation (3)

Failing computation:

mbFail :: Maybe a
mbFail = Nothing

The Safe Evaluator Revisited

safeEval :: Exp -> Maybe Int
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
safeEval e2 `mbSeq` \n2 ->
    mbReturn (n1 + n2)

...safeEval (Div e1 e2) =
    safeEval e1 `mbSeq` \n1 ->
safeEval e2 `mbSeq` \n2 ->
    if n2 == 0 then mbFail
    else mbReturn (n1 'div' n2))

Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
    where
        ntAux :: Tree a -> Int -> (Tree Int,Int)
        ntAux (Leaf _) n = (Leaf n, n+1)
        ntAux (Node t1 t2) n =
            let (t1', n') = ntAux t1 n
            in let (t2', n'') = ntAux t2 n'
                 in (Node t1' t2', n'')

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?
### Stateful Computations (1)

- A **stateful computation** consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:
  
  ```haskell
 type S a = Int -> (a, Int)
  ```

  (Only Int state for the sake of simplicity.)
- A value (function) of type `S a` can now be viewed as denoting a stateful computation computing a value of type `a`.

### Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. **state updating is an effect**, implicitly affecting subsequent computations. (As we would expect.)

### Stateful Computations (3)

- Computation of a value without changing the state (For ref.: `S a = Int -> (a, Int)`):
  
  ```haskell
 sReturn :: a -> S a
 sReturn a = \n -> (a, n)
  ```

- Sequencing of stateful computations:
  
  ```haskell
 sSeq :: S a -> (S b) -> S b
 sSeq s a f = \n ->
 let (a', n') = s a n
 in f a n'
  ```

### Stateful Computations (4)

**Reading and incrementing the state**

(For ref.: `S a = Int -> (a, Int)`):

```haskell
sInc :: S Int
sInc = \n -> (n, n + 1)
```

**Numbering trees revisited**

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)
numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
where
 ntAux :: Tree a -> S (Tree Int)
 ntAux (Leaf _) =
 sInc \sSeq\ \n -> sReturn (Leaf n)
 ntAux (Node t1 t2) =
 ntAux t1 \sSeq\ \t1' ->
 ntAux t2 \sSeq\ \t2' ->
 sReturn (Node t1' t2')
```

### Observations

- The “plumbing” has been captured by the abstractions.
- In particular:
  - counter no longer manipulated directly
  - no longer any risk of “passing on” the wrong version of the counter!

### Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
  - A type denoting computations
  - A function constructing an effect-free computation of a value
  - A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a **MONAD**.

### Monads in Functional Programming

A monad is represented by:

- A type constructor
  
  ```haskell
 M :: * -> *
  ```

- A polymorphic function `return :: a -> M a` for lifting a value to a computation.
- A polymorphic function `(>>=) :: M a -> (a -> M b) -> M b` for sequencing computations.

### Exercise 2: `join` and `fmap`

Equivalently, the notion of a monad can be captured through the following functions:

```haskell
return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)
join "flattens" a computation, `fmap` "lifts" a function to map computations to computations.

Define `join` and `fmap` in terms of `>>=` (and `return`), and `return` in terms of `join` and `fmap`.

```
(>>=) :: M a -> (a -> M b) -> M b
(>>=) f x = x >>= f
return a = sReturn a
join (sReturn (sReturn a)) = sSeq sReturn a (sReturn id)
fmap f (sReturn a) = sReturn (f . id) a
```
Exercise 2: Solution

join :: M (M a) -> M a
join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b
fmap f m = m >>= \a -> return (f a)

or:
fmap :: (a -> b) -> M a -> M b
fmap f m = m >>= return . f

(>>=) :: M a -> (a -> M b) -> M b
m >>= f = join (fmap f m)

Monad laws

Additionally, the following **laws** must be satisfied:

\[
\text{return } x \gg \gg f = f x
\]
\[
m \gg \gg \text{return} = m
\]
\[
(m \gg \gg f) \gg \gg g = m \gg \gg (\lambda x \rightarrow f x \gg \gg g)
\]

I.e., return is the right and left identity for \(\gg \gg \), and \(\gg \gg \) is associative.

Exercise 3: The Identity Monad

The **Identity Monad** can be understood as representing **effect-free** computations:

\[
type I a = a
\]

1. Provide suitable definitions of return and \(\gg \gg \).
2. Verify that the monad laws hold for your definitions.

Exercise 3: Solution

return :: a -> I a
return = id

(>>) = I a -> (a -> I b) -> I b
m >>= f = f m

-- or: (>>) = flip ($)

Simple calculations verify the laws, e.g.:

\[
\text{return } x \gg f = \text{id } x \gg f = x \gg f = f x
\]

Monads in Category Theory (1)

The notion of a monad originated in Category Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

- **Kleisli triple/triple in extension form:**

 A **Kleisli triple** over a category \(\mathbb{C} \) is a triple \((T, \eta, \mu) \), where \(T : |\mathbb{C}| \to |\mathbb{C}| \), \(\eta : \text{id}_{|\mathbb{C}|} \to TA \) for \(A \in |\mathbb{C}| \), \(f^* : TA \to TB \) for \(f : A \to TB \).

 (Additionally, some laws must be satisfied.)

Monads in Category Theory (2)

- **Monad/triple in monoid form:** More akin to the join/fmap version:

 A **monad** over a category \(\mathbb{C} \) is a triple \((T, \eta, \mu) \), where \(T : \mathbb{C} \to \mathbb{C} \) is a functor, \(\eta : \text{id}_{\mathbb{C}} \to T \) and \(\mu : T^2 \to T \) are natural transformations.

 (Additionally, some commuting diagrams must be satisfied.)

Reading

- All About Monads. http://www.haskell.org/all_about_monads