Haskell Overloading (1)

What is the type of (==)?
E.g. the following both work:
1 == 2
'a' == 'b'
I.e., (==) can be used to compare both numbers
and characters.
Maybe (==) :: a -> a -> Bool?
No!!! Cannot work uniformly for arbitrary

types!

Haskell Overloading (2)

A function like the identity function
id :: a -> a id x = x
is polymorphic precisely because it works
uniformly for all types: there is no need to
“inspect” the argument.
In contrast, to compare two “things” for equality,
they very much have to be inspected, and an
appropriate method of comparison needs to
be used.

Haskell Overloading (3)

Moreover, some types do not in general admit a
decidable equality. E.g. functions (when domain
infinite).
Similar remarks apply to many other types. E.g.:
• We may want to be able to add numbers of
any kind
• But to add properly, we must understand what
we are adding
• Not every type admits addition

Haskell Overloading (4)

Idea:
• Introduce the notion of a type class: a set of
types that support certain related operations.
• Constrain those operations to only work for
types belonging to the corresponding class.
• Allow a type to be made an instance of
(added to) a type class by providing
type-specific implementations of the
operations of the class.

The Type Class Eq

class Eq a where
 (==) :: a -> a -> Bool
(==) is not a function, but a method of the type
class Eq. It’s type signature is:
instance Eq a => a -> a -> Bool
Eq a is a class constraint. It says that the
equality method works for any type belonging to
the type class Eq.

Instances of Eq (1)

Various types can be made instances of a type
class like Eq by providing implementations of the
class methods for the type in question:
instance Eq Int where
 x == y = primEqInt x y
instance Eq Char where
 x == y = primEqChar x y

Instances of Eq (2)

Suppose we have a data type:
data Answer = Yes | No | Unknown
We can make Answer an instance of Eq as follows:
instance Eq Answer where
 Yes == Yes = True
 No == No = True
 Unknown == Unknown = True
 _ == _ = False

Instances of Eq (3)

Consider:
data Tree a = Leaf a
 | Node (Tree a) (Tree a)
Can Tree be made an instance of Eq?
Instances of Eq (4)

Yes, for any type \(a \) that is already an instance of Eq:

\[
\text{instance (Eq } a\text{) } \Rightarrow \text{Eq (Tree } a\text{) where}
\]
- \(\text{Leaf } a_1 \equiv \text{Leaf } a_2 \equiv a_1 == a_2 \)
- \(\text{Node } t_1 \text{ l } t_1 \text{ r} \equiv \text{Node } t_2 \text{ l } t_2 \text{ r} \equiv t_1 \text{ l} == t_2 \text{ l} \text{ && } t_1 \text{ r} == t_2 \text{ r} \)
- _ == _ == False

Derived Instances

Instance declarations are often obvious and mechanical. Thus, for certain built-in classes (notably Eq, Ord, Show), Haskell provides a way to automatically derive instances, as long as

- the data type is sufficiently simple
- we are happy with the standard definitions

Thus, we can do:

```
data Tree a = Leaf a |
  Node (Tree a) (Tree a) deriving Eq
```

Class Hierarchy

Type classes form a hierarchy. E.g.:

```
class Eq a => Ord a where
  (<) :: a -> a -> Bool
```

Eq is a superclass of Ord; i.e., any type in Ord must also be in Eq.

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be understood as a family of functions where the right one is chosen depending on the types.

A bit like OO languages like Java. But the underlying mechanism is quite different and much more general. Consider `read`:

```
read :: (Read a) => String -> a
```

Note: overloaded on the result type! A method that converts from a string to any other type in class `Read`!

Implementation (1)

The class constraints represent extra implicit arguments that are filled in by the compiler. These arguments are (roughly) the functions to use.

Thus, internally (\(\equiv \)) is a higher order function with three arguments:

\(\equiv \text{ eqF x y = eqF x y} \)

Implementation (3)

So one way of understanding a type like

\(\equiv :: \text{Eq a -> a -> a -> Bool} \)

is that \(\text{Eq a} \) corresponds to an extra implicit argument. The implicit argument corresponds to a so called directory, or tuple/record of functions, one for each method of the type class in question.

Some Standard Haskell Classes (1)

```
class Eq a where
  (==), (/=) :: a -> a -> Bool
```

```
class (Eq a) => Ord a where
  compare :: a -> a -> Ordering
  (<), (<=), (>=), (>) :: a -> a -> Bool
  max, min :: a -> a -> a
```

```
class Show a where
  show :: a -> String
```
Some Standard Haskell Classes (2)

```haskell
class (Eq a, Show a) => Num a where
  (+), (-), (*) :: a -> a -> a
  negate :: a -> a
  abs, signum :: a -> a
  fromInteger :: Integer -> a
```

Quiz: What is the type of a numeric literal like 42?
42 :: Int? Why?

Application: Automatic Differentiation

- **Automatic Differentiation**: method for augmenting code so that derivative(s) computed along with main result.
- Purely algebraic method: arbitrary code can be handled
- Exact results
- But no separate, self-contained representation of the derivative.

Automatic Differentiation: Key Idea

Consider a code fragment:

```
z1 = x + y
z2 = x * z1
```

Suppose the derivatives of \(x \) and \(y \) w.r.t. common variable is available in the variables \(x' \) and \(y' \).

Then code can be augmented to compute derivatives of \(z1 \) and \(z2 \):

```
z1 = x + y
z1' = x' + y'
z2 = x * z1
z2' = x' * z1 + x * z1'
```

Approaches

- Source-to-source translation
- Overloading of arithmetic operators and mathematical functions

The following variation is due to Jerzy Karczmarczuk. Infinite list of derivatives allows derivatives of arbitrary order to be computed.

Functional Automatic Differentiation (1)

Introduce a new numeric type \(C \) : value of a continuously differentiable function at a point along with all derivatives at that point:

```
data C = C Double CvalC (C a _ ) = a
derC (C _ x') = x'
```

Functional Automatic Differentiation (2)

Constants and the variable of differentiation:

```
zeroC :: C
zeroC = C 0.0
zeroC

constC :: Double -> C
constC a = C a zeroC
dVarC :: Double -> C
dVarC a = C a (constC 1.0)
```

Functional Automatic Differentiation (3)

Part of numerical instance:

```
instance Num C where
  (C a x') + (C b y') =
    C (a + b) (x' + y')
  (C a x') - (C b y') =
    C (a - b) (x' - y')
  x@(C a x') * y@(C b y') =
    C (a * b) (x' * y + x * y')
  fromInteger n =
    constC (fromInteger n)
```

Functional Automatic Differentiation (4)

Computation of \(y = 3t^2 + 7 \) at \(t = 2 \):

```
t = dVarC 2
y = 3 * t * t + 7
valC y ⇒ 19.0
valC (derC y) ⇒ 12.0
valC (derC (derC y)) ⇒ 6.0
valC (derC (derC (derC y))) ⇒ 0.0
```

Reading