Monads in Haskell

In Haskell, the notion of a monad is captured by a **Type Class**:

```haskell
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
```

Allows names of the common functions to be overloaded and sharing of derived definitions.

This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

The Maybe Monad in Haskell

```haskell
instance Monad Maybe where
  -- return :: a -> Maybe a
  return = Just

  -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
  --         -> Maybe b
  Nothing >>= _ = Nothing
  (Just x) >>= f = f x
```
Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

```haskell
ewtype S a = S (Int -> (a, Int))
unS :: S a -> (Int -> (a, Int))
unS (S f) = f
```

Provide a Monad instance for `S`.

Exercise 1: Solution

```haskell
instance Monad S where
  return a = S (\s -> (a, s))
  m >>= f = S (\s -> let (a, s') = unS m s
    in unS (f a) s')
```

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```haskell
fail :: String -> Maybe a
fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a
m1 'catch' m2 = case m1 of
  Just _ -> m1
  Nothing -> m2
```

Monad-specific Operations (2)

Typical operations on a state monad:

```haskell
set :: Int -> S ()
set a = S (\_ -> ((), a))

get :: S Int
get = S (\s -> (s, s))
```

Moreover, need to “run” a computation. E.g.:

```haskell
runS :: S a -> a
runS m = fst (unS m 0)
```
The do-notation (1)

Haskell provides convenient syntax for programming with monads:

```
do
  a <- exp_1
  b <- exp_2
  return exp_3
```

is syntactic sugar for

```
exp_1 >>= \a ->
exp_2 >>= \b ->
return exp_3
```

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

```
do
  exp_1
  exp_2
  return exp_3
```

is syntactic sugar for

```
exp_1 >>= \_ ->
exp_2 >>= \_ ->
return exp_3
```

The do-notation (3)

A let-construct is also provided:

```
do
  let a = exp_1
     b = exp_2
  return exp_3
```

is equivalent to

```
do
  a <- return exp_1
  b <- return exp_2
  return exp_3
```

Numbering Trees in do-notation

```haskell
numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
where
  ntAux :: Tree a -> S (Tree Int)
  ntAux (Leaf _) = do
    n <- get
    set (n + 1)
    return (Leaf n)
  ntAux (Node t1 t2) = do
    t1' <- ntAux t1
    t2' <- ntAux t2
    return (Node t1' t2')
```
Given a suitable “Diagnostics” monad \(D \) that collects error messages, \(\text{enterVar} \) can be turned from this:

\[
\text{enterVar} :: \text{Id} \to \text{Int} \to \text{Type} \to \text{Env} \to \text{Either Env ErrorMgs}
\]

into this:

\[
\text{enterVarD} :: \text{Id} \to \text{Int} \to \text{Type} \to \text{Env} \to D \text{ Env}
\]

and then \(\text{identDefs} \) from this ...

\[
\text{identDefsD} \ l \ \text{env} \ [\] = \text{return} \ ([][], \ \text{env})
\]

\[
\text{identDefsD} \ l \ \text{env} \ ((i,t,e) : ds) = \text{do}
\]

\[
e' \leftarrow \text{identAuxD} \ l \ \text{env} \ e
\]

\[
e'v' \leftarrow \text{enterVarD} \ i \ l \ t \ \text{env}
\]

\[
(ds'', \ env'') \leftarrow \text{identDefsD} \ l \ \text{env}' \ ds
\]

\[
\text{return} \ ((i,t,e') : ds'', \ env'')
\]

(Suffix \(D \) just to remind us the types have changed.)

\[
\text{identDefs} \ l \ \text{env} \ [\] = ([], \ \text{env})
\]

\[
\text{identDefs} \ l \ \text{env} \ ((i,t,e) : ds) = ((i,t,e') : ds', \ env'')
\]

\[
\text{where}
\]

\[
e' = \text{identAux} \ l \ \text{env} \ e
\]

\[
\text{env}' = \text{enterVar} \ i \ l \ t \ \text{env}
\]

\[
(ds', \ env'', \ ds) = \text{identDefs} \ l \ \text{env} \ ds
\]

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!
The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where
    return a = [a]
    m >>= f = concat (map f m)
    fail s = []
```

Example: Result:

```
x <- [1, 2]  [(1,'a'),(1,'b'),
y <- ['a', 'b']  (2,'a'),(2,'b')]
return (x,y)
```

The Reader Monad

Computation in an environment:

```
instance Monad ((->) e) where
    return a = const a
    m >>= f = \e -> f (m e) e

ggetEnv :: ((->) e) e
    getEnv = id
```

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is abstract! Conceptually:

```
newtype IO a = IO (World -> (a, World))
```

Some operations:
```
putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getChar :: IO Char
getLine :: IO String
getContents :: String
```

Monad Transformers (1)

What if we need to support more than one type of effect?
For example: State and Error/Partiality?
We could implement a suitable monad from scratch:

```
newtype SE s a = SE (s -> Maybe (a, s))
```
Monad Transformers (2)

However:

- Not always obvious how: e.g., should the combination of state and error have been
 newtype SE s a = SE (s -> (Maybe a, s))
- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (3)

Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.

Monad Transformers in Haskell (1)

- A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:
 \[T :: (\ast \rightarrow \ast) \rightarrow (\ast \rightarrow \ast) \]
- Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:
 \[\text{lift} :: M a \rightarrow T M a \]

Monad Transformers in Haskell (2)

- These requirements are captured by the following (multi-parameter) type class:
 \[\text{class } \ (\text{Monad m, Monad } (t \text{ m})) \rightarrow \text{MonadTransformer } t \text{ m where} \text{lift} :: m a \rightarrow t m a \]
Classes for Specific Effects

A monad transformer adds specific effects to any monad. Thus the effect-specific operations needs to be overloaded. For example:

```hs
class Monad m => E m where
eFail :: m a
eHandle :: m a -> m a -> m a
```

```hs
class Monad m => S m s | m -> s where
sSet :: s -> m ()
sGet :: m s
```

The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```hs
newtype I a = I a
unI (I a) = a

instance Monad I where
  return a = I a
  m >>= f = f (unI m)

runI :: I a -> a
runI = unI
```

The Error Monad Transformer (1)

```hs
newtype ET m a = ET (m (Maybe a))
unET (ET m) = m
```

Any monad transformed by ET is a monad:

```hs
instance Monad m => Monad (ET m) where
  return a = ET (return (Just a))
  m >>= f = ET $ do
    ma <- unET m
    case ma of
      Nothing -> return Nothing
      Just a -> unET (f a)
```

The Error Monad Transformer (2)

We need the ability to run transformed monads:

```hs
runET :: Monad m => ET m a -> m a
runET etm = do
  ma <- unET etm
  case ma of
    Just a -> return a
    Nothing -> error "Should not happen"
```

ET is a monad transformer:

```hs
instance Monad m => MonadTransformer ET m where
  lift m = ET (m >>= \a -> return (Just a))
```
Any monad transformed by \(ET \) is an instance of \(E \):

\[
\text{instance Monad } m \Rightarrow E \ (ET \ m) \text{ where}
\]
\[
eFail = ET \ (\text{return Nothing})
\]
\[
m_1 \ 'eHandle' \ m_2 = ET \ \&\&
\]
\[
ma \leftarrow \text{unET} \ m_1
\]
\[
case ma \ of
\]
\[
\text{Nothing} \rightarrow \text{unET} \ m_2
\]
\[
\text{Just } __ \rightarrow \text{return} \ ma
\]

A state monad transformed by \(ET \) is a state monad:

\[
\text{instance } S \ m \ s \Rightarrow S \ (ET \ m) \ s \text{ where}
\]
\[
sSet \ s = \text{lift} \ (sSet \ s)
\]
\[
sGet = \text{lift} \ sGet
\]

Let

\[
ex2 = \text{eFail} \ 'eHandle' \ \text{return} \ 1
\]

1. Suggest a possible type for \(ex2 \).
 (Assume \(1 :: \text{Int} \).)

2. Given your type, use the appropriate combination of “run functions” to run \(ex2 \).

\[
ex2 :: ET \ I \ Int
\]
\[
ex2 = \text{eFail} \ 'eHandle' \ \text{return} \ 1
\]

\[
ex2result :: \text{Int}
\]
\[
ex2result = \text{runI} \ (\text{runET} \ ex2)
\]
The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))
unST (ST m) = m

Any monad transformed by ST is a monad:
instance Monad m => Monad (ST s m) where
 return a = ST (\s -> return (a, s))
 m >>= f = ST \s -> do
 (a, s') <- unST m s
 unST (f a) s'

LiU-FP2010 Part II: Lecture 6 – p.33/83

The State Monad Transformer (2)

We need the ability to run transformed monads:
runST :: Monad m => ST s m a -> s -> m a
runST stf s0 = do
 (a, _) <- unST stf s0
 return a

ST is a monad transformer:
instance Monad m => MonadTransformer (ST s) m where
 lift m = ST (\s -> m >>= \a ->
 return (a, s))

LiU-FP2010 Part II: Lecture 6 – p.34/83

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:
instance Monad m => S (ST s m) s where
 sSet s = ST (_ -> return (((), s))
 sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error monad:
instance E m => E (ST s m) where
 eFail = lift eFail
 m1 'eHandle' m2 = ST $ \s ->
 unST m1 s 'eHandle' unST m2 s

LiU-FP2010 Part II: Lecture 6 – p.35/83

Exercise 3: Effect Ordering

Consider the code fragment
ex3a :: (ST Int (ET I)) Int
ex3a = (sSet 42 >> eFail) 'eHandle' sGet

Note that the exact same code fragment also can be typed as follows:
ex3b :: (ET (ST Int I)) Int
ex3b = (sSet 42 >> eFail) 'eHandle' sGet

What is
runI (runET (runST ex3a 0))
runI (runST (runET ex3b) 0)

LiU-FP2010 Part II: Lecture 6 – p.36/83
Exercise 3: Solution

\[
\text{runI (runET (runST ex3a 0))} = 0 \\
\text{runI (runST (runET ex3b) 0)} = 42
\]

Why? Because:

\[
\begin{align*}
\text{ST s (ET I) a} & \rightsquigarrow s \rightarrow (ET I) (a, s) \\
& \rightarrow s \rightarrow I (\text{Maybe } (a, s)) \\
& \rightarrow s \rightarrow \text{Maybe } (a, s)
\end{align*}
\]

\[
\begin{align*}
\text{ET (ST s I) a} & \rightsquigarrow (ST s I) (\text{Maybe } a) \\
& \rightarrow s \rightarrow I (\text{Maybe } a, s) \\
& \rightarrow s \rightarrow (\text{Maybe } a, s)
\end{align*}
\]

Exercise 4: Alternative ST?

To think about.

Could ST have been defined in some other way, e.g.

\[
\text{newtype ST s m a = ST } (m \ (s \rightarrow (a, s)))
\]

or perhaps

\[
\text{newtype ST s m a = ST } (s \rightarrow (m \ a, s))
\]

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff (2008, 2009) has proposed a possible, more extensible alternative.

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

\[
\begin{array}{c}
\text{f} \\
\end{array} \quad \begin{array}{c} \swarrow \\
\text{g} \end{array}
\]

A **combinator** can be defined that captures this idea:

\[
(\triangleright\triangleright\triangleright) \ : \ B \ a \ b \ \rightarrow \ B \ b \ c \ \rightarrow \ B \ a \ c
\]
Arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Arrows (3)

John Hughes' **arrow** framework:

- Abstract data type interface for function-like types (or “blocks”, if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to **monads**, since arrows are computations, but more general.
- Provides a minimal set of “wiring” combinators.

What is an arrow? (1)

- A **type constructor** \(a \) of arity two.
- Three operators:
 - **lifting**:
 \[\text{arr} :: (b \to c) \to a\ b\ c \]
 - **composition**:
 \[(\ggg) :: a\ b\ c \to a\ c\ d \to a\ b\ d \]
 - **widening**:
 \[\text{first} :: a\ b\ c \to a\ (b,d)\ (c,d) \]
- A set of **algebraic laws** that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

\[\begin{align*}
\text{arr}\ f & \quad f \ggg g \\
\text{first}\ f &
\end{align*} \]
The Arrow class

In Haskell, a type class is used to capture these ideas (except for the laws):

```haskell
class Arrow a where
  arr :: (b -> c) -> a b c
  (>>>) :: a b c -> a c d -> a b d
  first :: a b c -> a (b,d) (c,d)
```

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of

- `arr`
- `(>>>)`
- `first`

for this case!

(We have not looked at what the laws are yet, but they are “natural”.)

Functions are arrows (2)

Solution:

- `arr = id`

 To see this, recall

  ```haskell
  id :: t -> t
  arr :: (b->c) -> a b c
  Instantiate with
  a = (->)
  t = b->c = (->) b c
  ```

Functions are arrows (3)

- `f >>> g = \a -> g (f a) or`
- `f >>> g = g . f or even`
- `(>>>) = flip (.)`
- `first f = \(b,d) -> (f b,d)`
Functions are arrows (4)

Arrow instance declaration for functions:

```haskell
instance Arrow (->) where
  arr     = id
  (>>>)   = flip (.)
  first f = \(b,d) -> (f b, d)
```

Some arrow laws

- \((f >>> g) >>> h\) = \(f >>> (g >>> h)\)
- \(arr (f >>> g) = arr f >>> arr g\)
- \(arr id >>> f = f\)
- \(f = f >>> arr id\)
- \(first (arr f) = arr (first f)\)
- \(first (f >>> g) = first f >>> first g\)

The loop combinator (1)

Another important operator is `loop`: a fixed-point operator used to express recursive arrows or feedback:

![Loop diagram](image)

The loop combinator (2)

Not all arrow instances support `loop`. It is thus a method of a separate class:

```haskell
class Arrow a => ArrowLoop a where
  loop :: a (b, d) (c, d) -> a b c
```

Remarkably, the four combinators `arr`, `>>,`, `first`, and `loop` are sufficient to express any conceivable wiring!
Some more arrow combinators (1)

second :: Arrow a => a b c -> a (d,b) (d,c)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

Some more arrow combinators (2)

As diagrams:

second f

f *** g

f &&& g

Exercise 6

Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double

second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)
f &&& g = arr (
x -> (x,x)) >>> (f *** g)
Exercise 3: Describe the following circuit using arrow combinators:

\[
\text{circuit}_v1 :: \text{A Double Double} \\
\text{circuit}_v1 = (\text{a1} &&& \text{arr id}) \\
\quad \gg (\text{a2} *** \text{a3}) \\
\quad \gg \text{arr (uncurry (+))}
\]

Exercise 3: Describe the following circuit:

\[
\text{circuit}_v2 :: \text{A Double Double} \\
\text{circuit}_v2 = \text{arr } (\lambda x \to (x,x)) \\
\quad \gg \text{first a1} \\
\quad \gg (\text{a2} *** \text{a3}) \\
\quad \gg \text{arr (uncurry (+))}
\]

Exercise 6: Another solution

\[
\text{circuit}_v2 :: \text{A Double Double} \\
\text{circuit}_v2 = \text{arr } (\lambda x \to (x,x)) \\
\quad \gg \text{first a1} \\
\quad \gg (\text{a2} *** \text{a3}) \\
\quad \gg \text{arr (uncurry (+))}
\]

The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports *pointed* arrow programming. Only *syntactic* sugar.

\[
\text{proc } \text{pat} \to \text{do } \{ \text{rec} \}
\]

\[
\text{pat}_1 \leftarrow \text{sfexp}_1 \leftarrow \text{exp}_1 \\
\text{pat}_2 \leftarrow \text{sfexp}_2 \leftarrow \text{exp}_2 \\
\text{...} \\
\text{pat}_n \leftarrow \text{sfexp}_n \leftarrow \text{exp}_n \\
\text{returnA} \leftarrow \text{exp}
\]

Also: let \(\text{pat} = \text{exp} \equiv \text{pat} \leftarrow \text{arr id} \leftarrow \text{exp} \)

The arrow do notation (2)

Let us redo exercise 3 using this notation:

\[
\text{circuit}_v4 :: \text{A Double Double} \\
\text{circuit}_v4 = \text{proc } x \to \text{do} \\
\quad y_1 \leftarrow \text{a1} \leftarrow x \\
\quad y_2 \leftarrow \text{a2} \leftarrow y_1 \\
\quad y_3 \leftarrow \text{a3} \leftarrow x \\
\text{returnA} \leftarrow y_2 + y_3
\]
We can also mix and match:

```
circuit_v5 :: A Double Double
circuit_v5 = proc x -> do
  y2 <- a2 <<< a1 -< x
  y3 <- a3 -< x
  returnA -< y2 + y3
```

Exercise 5: Describe this using only the arrow combinators.

Recursive networks: do-notation:

```
a1, a2 :: A Double Double
a3 :: A (Double,Double) Double
```

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
  arr f = K (\b -> return (f b))
  K f >>> K g = K (\b -> f b >>= g)
```
Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation are effectively monads:

\[
\text{apply} :: \text{Arrow } a \Rightarrow a (a \ b \ c, b) c
\]

Exercise 7: Verify that

\[
\text{newtype } M b = M (A () b)
\]

is a monad if \(A \) is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for reactive programming in a functional setting:
 - Input arrives incrementally while system is running.
 - Output is generated in response to input in an interleaved and timely fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced switching constructs allows for highly dynamic system structure.

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.
FRP applications

Some domains where FRP has been used:
- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

Signal functions

Key concept: functions on signals.

Intuition:
- Signal $\alpha \approx \text{Time} \rightarrow \alpha$
- $x :: \text{Signal } T1$
- $y :: \text{Signal } T2$
- SF $\alpha \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta$
- $f :: \text{SF } T1 T2$

Additionally: causality requirement.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$\text{state}(t)$ summarizes input history $x(t')$, $t' \in [0, t]$.

Functions on signals are either:
- **Stateful**: $y(t)$ depends on $x(t)$ and $\text{state}(t)$
- **Stateless**: $y(t)$ depends only on $x(t)$
Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

• \(\text{arr} :: (a \to b) \to SF ~ a ~ b \)
• \(\text{>>>} :: SF ~ a ~ b \to SF ~ b ~ c \to SF ~ a ~ c \)
• \(\text{first} :: SF ~ a ~ b \to SF ~ (a,c) ~ (b,c) \)
• \(\text{loop} :: SF ~ (a,c) ~ (b,c) \to SF ~ a ~ b \)

But `apply` has no useful meaning. Hence SF is not a monad.

Some further basic signal functions

• \(\text{identity} :: SF ~ a ~ a \)
 \[\text{identity} = \text{arr} ~ \text{id} \]
• \(\text{constant} :: b \to SF ~ a ~ b \)
 \[\text{constant} ~ b = \text{arr} ~ (\text{const} ~ b) \]
• \(\text{integral} :: \text{VectorSpace a} \to SF ~ a ~ a \)
• \(\text{time} :: SF ~ a ~ \text{Time} \)
 \[\text{time} = \text{constant} ~ 1.0 \to \text{integral} \]
• \((\text{^<<}) :: (b \to c) \to SF ~ a ~ b \to SF ~ a ~ c \)
 \[f (\text{^<<}) ~ \text{sf} = \text{sf} \to \text{arr} ~ f \]

Example: A bouncing ball

\[y = y_0 + \int v \, dt \]
\[v = v_0 + \int -9.81 \]

On impact:
\[v = -v(t-) \]
(fully elastic collision)

Part of a model of the bouncing ball

Free-falling ball:

```haskell```
type Pos = Double

type Vel = Double

fallingBall ::
  Pos \to Vel \to SF () (Pos, Vel)
fallingBall y0 v0 = proc () \-> do
  v <- (v0 +) \^<< integral \<- -9.81
  y <- (y0 +) \^<< integral \<- v
  returnA \<- (y, v)
```
Dynamic system structure

Switching allows the structure of the system to evolve over time:

![Diagram](image)

Example: Space Invaders

![Space Invaders](image)

Overall game structure

![Diagram](image)

Reading (1)

Reading (2)

Reading (3)

Reading (4)