
LiU-FP2016, Linköping, 23–27 May 2016

Problem Set 5: Monads

Henrik Nilsson

1. Verify that Maybe a indeed is a monad by verifying the monad laws for mbReturn
and mbSeq from Lecture 7.

2. (a) Write a Haskell program that asks a user for his/her name and then greets
the user by name ten times. Use do-notation.

(b) Reimplement the tree numbering program from Lecture 7 using the STmonad
to keep a counter in an imperative variable (an STRef). The function numberTree

should still have the type Tree a -> Tree Int: the use of imperative effects
for implementing the function should be hidden. You can find the function-
ality you need in the modules Control.Monad.St and Data.STRef.

3. Below are the type signatures for a number of monad utility functions from the
Haskell prelude and the module Monad. Define these utilities in terms of the basic
monad operations. (If it is not reasonably clear from the type signatures what the
intended meaning of each function is, ask!)

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> (m a -> m b)


