The λ-Calculus: What is it? (1)

LiU-FP2016: Lecture 2

The Untyped λ-Calculus: Introduction
Henrik Nilsson
University of Nottingham, UK

Key Idea

λ-abstraction (or anonymous function)

Multiple arguments handled by "returning" lambda abstractions that then are applied to further arguments: Currying.

Exercise

In the following:

- Which variables are free and which are bound?
- Which terms are open and which are closed?
(a) x
(d) $\lambda x . \lambda y . x y$
(b) $\lambda x \cdot x$
(e) $(\lambda x \cdot x) x$
(c) $\lambda x \cdot y$
(f) $\lambda x . \lambda y .(\lambda x . x y)(\lambda z . x y)$
- Pure notion of effective computation procedure: all computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.
- Cf. other formalisations of the notion of effective computation; e.g., the Turing machine.
- The λ-calculus and Turing Machines are equivalent in that they capture the exact same notion of what "computation" means.

$$
\begin{array}{rcll}
t & \rightarrow & & \text { terms: } \\
& x & \text { variable } \\
& \lambda x . t & \text { abstraction } \\
& t t & \text { application }
\end{array}
$$

Note:

- x is the syntactic category of variables. We will use actual names like x, y, z, u, v, w, \ldots
- λ-abstractions often named for convenience. E.g. $I \equiv \lambda x . x$. Just an abbreviation! So e.g. $F \equiv \lambda x .(\ldots F \ldots)$ not valid def. Why?

Operational Semantics (1)

Sole means of computation: β-reduction or function application:

$$
\left(\lambda x . t_{1}\right) t_{2} \underset{\beta}{\rightarrow}\left[x \mapsto t_{2}\right] t_{1}
$$

where

$$
\left[x \mapsto t_{2}\right] t_{1}
$$

means "term t_{1} with all free occurrences of x (with respect to t_{1}) replaced by t_{2}."
Subtle problems concerning name clashes will be considered later.

- The Church-Turing Hypothesis: The λ-calculus, Turing Machines, etc. coincides with our intuitive understanding of what "computation" means.
- The λ-calculus is important because it is at once:
- very simple, yet in essence a practically useful programming language
- mathematically precise, allowing for formal reasoning.

Scope

- An occurrence of x is bound if it occurs in the body t of a λ-abstraction λ x.t.
- A non-bound occurrence is free.
- A λ-term with no free variables is called closed. Otherwise open.
- A closed λ-term is called a combinator.

Operational Semantics (2)

A term that can be β-reduced is called a (β-)redex.
Exercise: Underline the redexes in

$$
(\lambda x \cdot x)((\lambda x \cdot x)(\lambda z \cdot(\lambda x \cdot x) z))
$$

Programming In the λ-Calculus

How can such a simple language express arbitrary computations?
Nothing that looks like arithmetic, or conditionals, and seems not even recusrion allowed?
To make it plausible that the λ-calculus indeed is a general notion of computation, we will see how to express:

- Booleans
- Arithmetic
- Recursion

Church Numerals (1)

dea: The natural number n is represented by a function that applies its first argument n times to its second argument

$$
\begin{aligned}
& C_{0} \equiv \lambda s . \lambda z . z \\
& C_{1} \equiv \lambda s \cdot \lambda z . s z \\
& C_{2} \equiv \lambda s . \lambda z . s(s z) \\
& C_{3} \equiv \lambda s . \lambda z . s(s(s z))
\end{aligned}
$$

Etc.

Church Booleans

True, false, and conditional:

$$
\begin{aligned}
T & \equiv \lambda t \cdot \lambda f \cdot t \\
F & \equiv \lambda t \cdot \lambda f \cdot f \\
I F & \equiv \lambda l \cdot \lambda m \cdot \lambda n \cdot l m n
\end{aligned}
$$

Exercise: Evaluate $I F T v w$ Logical connectives:

$$
\begin{aligned}
A N D & \equiv \lambda b \cdot \lambda c \cdot b c F \\
O R & \equiv \lambda b \cdot \lambda c \cdot b T c \\
N O T & \equiv \lambda b \cdot b F T
\end{aligned}
$$

Church Numerals (2)

Operations:

$$
\begin{aligned}
S U C C & \equiv \lambda n \cdot \lambda s \cdot \lambda z \cdot s(n s z) \\
P L U S & \equiv \lambda m \cdot \lambda n \cdot \lambda s \cdot \lambda z \cdot m s(n s z) \\
T I M E S & \equiv \lambda m \cdot \lambda n \cdot \lambda s \cdot m(n s) \\
P O W E R & \equiv \lambda m \cdot \lambda n \cdot m n \\
I S Z E R O & \equiv \lambda m \cdot m(\lambda x \cdot F) T
\end{aligned}
$$

Pairs

If we can represent pairs, then we can represnt any kind of compound data:

$$
\begin{aligned}
P A I R & \equiv \lambda f \cdot \lambda s \cdot \lambda b \cdot b f s \\
F S T & \equiv \lambda p \cdot p T \\
S N D & \equiv \lambda p \cdot p F
\end{aligned}
$$

Church Numerals (3)

Subtraction is more intricate. Let us consider the predecessor function:

$$
\begin{aligned}
Z Z & \equiv P A I R C_{0} C_{0} \\
S S & \equiv \lambda p \cdot P A I R(S N D p)(S U C C(S N D p)) \\
P R E D & \equiv \lambda m \cdot F S T(m S S Z Z)
\end{aligned}
$$

dea: $S S$ maps (m, n) to $(n, n+1)$. Iterating $S S n$ times on $(0,0)$ means that the first component of the result is $n-1$.

