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The \-Calculus: What is it? (1)

Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

Invented in the 1920s by Alonzo Church.

Cf. other formalisations of the notion of
effective computation; e.g., the Turing
machine.

The A-calculus and Turing Machines are
equivalent in that they capture the exact same
notion of what “computation” means.
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The \-Calculus: What is it? (2)

The Church-Turing Hypothesis: The
A-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“‘computation” means.

The A-calculus is important because it is at
once:

very simple, yet in essence a practically
useful programming language

mathematically precise, allowing for formal
reasoning.



Key Idea

A-abstraction (or anonymous function):

AT . T



Key Idea

A-abstraction (or anonymous function):

@/—— one-argument function



Key Idea

A-abstraction (or anonymous function):

-m ___——one-argument function

formal argument




Key Idea

A-abstraction (or anonymous function):

___——one-argument function

)\ @ function body
formal argument




Key Idea

A-abstraction (or anonymous function):

___——one-argument function

)\ @ function body
formal argument

Multiple arguments handled by “returning”
lambda abstractions that then are applied to
further arguments: Currying.



terms:
variable
abstraction
application
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t — terms:
x variable
At abstraction
|ttt application

Note:
x 1S the syntactic category of variables. We

will use actual names like z, v, 2z, u, v, w, ...
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A-abstractions often named for convenience.

E.g. I = A\x.x.
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t — terms:
x variable
At abstraction
|ttt application

Note:

x 1S the syntactic category of variables. We
will use actual names like z, v, 2z, u, v, w, ...

A-abstractions often named for convenience.
E.g. I = \x.x. Just an abbreviation!
Soe.g. F=Xx.(...F...) notvalid def. Why?
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Scope

An occurrence of x iIs bound if It occurs In
the body ¢ of a A-abstraction \zx.t.

A non-bound occurrence Is free.

A \-term with no free variables is called
closed. Otherwise open.

A closed )\-term is called a combinator.



Exercise

In the following:

Which variables are free and which are
bound?

Which terms are open and which are closed?

(a) =z (d) Az \y.zy
(b) A\z.x (e) (\r.x)
(C) A\x.y (f) Az y.(Ax.xy) (Az.xy)



Operational Semantics (1)

Sole means of computation: j-reduction or
function application:

()\Zl?tl) to 7 [CE — tg]tl

where
[Zl? —> tg]tl

means “term t; with all free occurrences of z
(with respect to ;) replaced by ¢,.”

Subtle problems concerning name clashes will
be considered later.



Operational Semantics (2)

A term that can be S-reduced is called a
(G-)redex.

Exercise: Underline the redexes in

(Az.z) (A\z.x) (Az.(A\z.20) 2))
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Programming In the \-Calculus

How can such a simple language express
arbitrary computations?

Nothing that looks like arithmetic, or conditionals,
and seems not even recusrion allowed?

To make it plausible that the A-calculus indeed is
a general notion of computation, we will see how

to express:
Booleans
Arithmetic
Recursion
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Church Booleans

True, false, and conditional:

T AT
a AT f
IF = AN.)m\nlmn

Exercise: Evaluate IFF T' v w
Logical connectives:

AND = Mo )ebcec F
OR = MNb.XebT c
NOT = MNobFT



Pairs

If we can represent pairs, then we can represnt
any kind of compound data:

PAIR = Af.As.Ab.b f s
FST = MppT
SND = Mp.p F



Church Numerals (1)

Ildea: The natural number n Is represented by a
function that applies its first argument n times to
Its second argument.

Co = As.\z.z

C7 = As.\z.sz

Cy = As.)hz.5 (s 2)

C3 = As.hz.5 (s (s 2))

Etc.



Church Numerals (2)

Operations:

SUCC =

PLUS
TIMES
POWER
ISZERO

AN.ASNz.s (N s z)

AMANASAz.m s (n s z)
Am.An.As.m (n s)

AM.An.mn
Am.m (Ax. F) T



Church Numerals (3)

Subtraction is more intricate. Let us consider the
predecessor function:

VA4 PAIR Cy C
S5 Ap.PAIR (SND p) (SUCC (SND p))
PRED = Am.FST (m SS Z7)

ldea: SS maps (m,n) to (n,n + 1). lterating SS n
times on (0,0) means that the first component of
the resultis n — 1.
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