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The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.

• Cf. other formalisations of the notion of
effective computation; e.g., the Turing
machine.

• The λ-calculus and Turing Machines are
equivalent in that they capture the exact same
notion of what “computation” means.
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The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.
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The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.

• The λ-calculus is important because it is at
once:

- very simple, yet in essence a practically
useful programming language

- mathematically precise, allowing for formal
reasoning.
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Key Idea

λ-abstraction (or anonymous function):

λx . t
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Key Idea

λ-abstraction (or anonymous function):

one-argument function

λx . t function body

formal argument

Multiple arguments handled by “returning”
lambda abstractions that then are applied to
further arguments: Currying.
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Syntax

t → terms:

x variable

| λx.t abstraction

| t t application
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Syntax

t → terms:

x variable

| λx.t abstraction

| t t application

Note:

• x is the syntactic category of variables. We
will use actual names like x, y, z, u, v, w, . . .

• λ-abstractions often named for convenience.
E.g. I ≡ λx.x. Just an abbreviation!
So e.g. F ≡ λx.(. . . F . . .) not valid def. Why?
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Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

• A non-bound occurrence is free.

• A λ-term with no free variables is called
closed. Otherwise open.

• A closed λ-term is called a combinator.
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Exercise

In the following:

• Which variables are free and which are
bound?

• Which terms are open and which are closed?

(a) x (d) λx.λy.x y

(b) λx.x (e) (λx.x) x

(c) λx.y (f) λx.λy.(λx.x y) (λz.x y)
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Operational Semantics (1)

Sole means of computation: β-reduction or
function application:

(λx.t1) t2 →
β
[x 7→ t2]t1

where

[x 7→ t2]t1

means “term t1 with all free occurrences of x
(with respect to t1) replaced by t2.”

Subtle problems concerning name clashes will
be considered later.
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Operational Semantics (2)

A term that can be β-reduced is called a
(β-)redex.

Exercise: Underline the redexes in

(λx.x) ((λx.x) (λz.(λx.x) z))
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Programming In the λ-Calculus

How can such a simple language express
arbitrary computations?
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Programming In the λ-Calculus

How can such a simple language express
arbitrary computations?

Nothing that looks like arithmetic, or conditionals,
and seems not even recusrion allowed?

To make it plausible that the λ-calculus indeed is
a general notion of computation, we will see how
to express:

• Booleans

• Arithmetic

• Recursion
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Church Booleans

True, false, and conditional:

T ≡ λt.λf.t

F ≡ λt.λf.f

IF ≡ λl.λm.λn.l m n
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Church Booleans

True, false, and conditional:

T ≡ λt.λf.t

F ≡ λt.λf.f

IF ≡ λl.λm.λn.l m n

Exercise: Evaluate IF T v w

Logical connectives:

AND ≡ λb.λc.b c F

OR ≡ λb.λc.b T c

NOT ≡ λb.b F T
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Pairs

If we can represent pairs, then we can represnt
any kind of compound data:

PAIR ≡ λf.λs.λb.b f s

FST ≡ λp.p T

SND ≡ λp.p F
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Church Numerals (1)

Idea: The natural number n is represented by a
function that applies its first argument n times to
its second argument.

C0 ≡ λs.λz.z

C1 ≡ λs.λz.s z

C2 ≡ λs.λz.s (s z)

C3 ≡ λs.λz.s (s (s z))

Etc.
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Church Numerals (2)

Operations:

SUCC ≡ λn.λs.λz.s (n s z)

PLUS ≡ λm.λn.λs.λz.m s (n s z)

TIMES ≡ λm.λn.λs.m (n s)

POWER ≡ λm.λn.m n

ISZERO ≡ λm.m (λx.F ) T
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Church Numerals (3)

Subtraction is more intricate. Let us consider the
predecessor function:

ZZ ≡ PAIR C0 C0

SS ≡ λp.PAIR (SND p) (SUCC (SND p))

PRED ≡ λm.FST (m SS ZZ )

Idea: SS maps (m,n) to (n, n+ 1). Iterating SS n

times on (0, 0) means that the first component of
the result is n− 1.
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