
LiU-FP2016: Lecture 3
The Untyped λ-Calculus: Recursion and Fixed

Points

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 3 – p.1/11

Fixed Points (1)

Consider a recursive function like factorial:

fac(n) = if n == 0 then

1

else

n * fac(n - 1)

Attempt to translate into λ-calculus:

FAC ≡ λn.IF (ISZ n) 1 (TIMES n (FAC (PRED 1)))

Is this OK?

LiU-FP2016: Lecture 3 – p.2/11

Fixed Points (2)

But consider

FAC ′ ≡ λf.λn.IF (ISZ n) 1 (TIMES n (f (PRED 1)))

Now suppose FAC is the factorial function.

Then FAC ′ FAC is also the factorial function.

That is: FAC = FAC ′ FAC (where = here is
semantical equality).

LiU-FP2016: Lecture 3 – p.3/11

Fixed Points (3)

In general, whenever x = f(x) for some function
f and value x, x is a fixed point of f .

Thus, FAC is a fixed point of FAC ′.

But

FAC ≡ FAC ′ FAC

is still useless as a definition.

LiU-FP2016: Lecture 3 – p.4/11



Fixed Points (4)

However, suppose we have a function FIX that
when given an arbitrary unary function computes
its smallest fixed point; i.e., for any function f :

FIX f = f (FIX f)

Then

FAC ≡ FIX FAC ′

is a valid definition, assuming FIX can be
defined.

LiU-FP2016: Lecture 3 – p.5/11

Questions

1. Does a function like FIX exist?

2. Does every function even have a fixed point?

3. If FIX exists, can it be defined in the
λ-calculus?

LiU-FP2016: Lecture 3 – p.6/11

Answer Q2 (1)

Does every function have a fixed point?

If we work with with functions on ordinary sets,
clearly not! E.g.

x = not x

does not have a solution in the set {False,True}.

Similarly, there is no n ∈ N such that

n = succ n

LiU-FP2016: Lecture 3 – p.7/11

Answer Q2 (2)

But there is a solution of we turn to domain
theory and consider functions over pointed
domains that have a specific bottom element ⊥
denoting divergence, non-termination:

⊥ = not ⊥

⊥ = succ ⊥

In general, domain theory allows for an additional
possible result, ⊥, which is the lest element,
meaning all functions have a unique least fixed
point in that setting.

LiU-FP2016: Lecture 3 – p.8/11



Answer Q1 & Q3

Yes and yes: a function for computing fixed
points in general exists and it can be defined in
the lambda calculus.

Many possibilities. The call-by-name fixed-point
combinator Y is probably the most famous and
simplest:

Y ≡ λf.(λx.f (x x)) (λx.f (x x))

Let’s verify Y F = F (Y F ) for any F (on the
white board).

LiU-FP2016: Lecture 3 – p.9/11

Back to Factorial

Now we can define:

FAC ≡ Y FAC ′

LiU-FP2016: Lecture 3 – p.10/11

Fixed Point Combinators in Real Life

• In denotational semantics, the meaning of
recursion and iteration is given in terms of
fixed point constructions.

• In langauges like Haskell, fix can easily be
defined (see example).

• Variations of fixed point operators are quite
often used in practice; e.g. for monadic fixed
points (see later).

LiU-FP2016: Lecture 3 – p.11/11


	Fixed Points (1)
	Fixed Points (2)
	Fixed Points (3)
	Fixed Points (4)
	Questions
	Answer Q2 (1)
	Answer Q2 (2)
	Answer Q1 & Q3
	Back to Factorial
	Fixed Point Combinators in Real Life

