LiU-FP2016: Lecture 3 The Untyped λ-Calculus: Recursion and Fixed Points

Henrik Nilsson

University of Nottingham, UK

Fixed Points (1)

Consider a recursive function like factorial:

$$
\begin{aligned}
& \operatorname{fac}(n)= \text { if } n=0 \text { then } \\
& 1 \\
& \text { else } \\
& n * \operatorname{fac}(n-1)
\end{aligned}
$$

Fixed Points (1)

Consider a recursive function like factorial:

$$
\begin{aligned}
& \operatorname{fac}(n)= \text { if } n=0 \text { then } \\
& 1 \\
& \text { else } \\
& n * \operatorname{fac}(n-1)
\end{aligned}
$$

Attempt to translate into λ-calculus:
$F A C \equiv \lambda n \cdot I F(I S Z n) 1($ TIMES $n(F A C(P R E D 1)))$
Is this OK?

Fixed Points (2)

But consider
$F A C^{\prime} \equiv \lambda f \cdot \lambda n \cdot I F(I S Z n) 1($ TIMES $n(f(P R E D 1)))$

Fixed Points (2)

But consider
$F A C^{\prime} \equiv \lambda f . \lambda n \cdot I F(I S Z n) 1($ TIMES $n(f(P R E D 1)))$
Now suppose $F A C$ is the factorial function.

Fixed Points (2)

But consider
$F A C^{\prime} \equiv \lambda f \cdot \lambda n \cdot I F(I S Z n) 1($ TIMES $n(f(P R E D 1)))$
Now suppose $F A C$ is the factorial function.
Then $F A C^{\prime} F A C$ is also the factorial function.
That is: $F A C=F A C^{\prime} F A C$ (where $=$ here is semantical equality).

Fixed Points (3)

In general, whenever $x=f(x)$ for some function f and value x, x is a fixed point of f.

Fixed Points (3)

In general, whenever $x=f(x)$ for some function f and value x, x is a fixed point of f.
Thus, $F A C$ is a fixed point of $F A C^{\prime}$.
But

$$
F A C \equiv F A C^{\prime} F A C
$$

is still useless as a definition.

Fixed Points (3)

In general, whenever $x=f(x)$ for some function f and value x, x is a fixed point of f.
Thus, $F A C$ is a fixed point of $F A C^{\prime}$.
But

$$
F A C \equiv F A C^{\prime} F A C
$$

is still useless as a definition.

Fixed Points (4)

However, suppose we have a function $F I X$ that when given an arbitrary unary function computes its smallest fixed point; i.e., for any function f :

$$
F I X f=f(F I X f)
$$

Then

$$
F A C \equiv F I X \quad F A C^{\prime}
$$

is a valid definition, assuming $F I X$ can be defined.

Fixed Points (4)

However, suppose we have a function $F I X$ that when given an arbitrary unary function computes its smallest fixed point; i.e., for any function f :

$$
F I X f=f(F I X f)
$$

Then

$$
F A C \equiv F I X \quad F A C^{\prime}
$$

is a valid definition, assuming $F I X$ can be defined.

Fixed Points (4)

However, suppose we have a function $F I X$ that when given an arbitrary unary function computes its smallest fixed point; i.e., for any function f :

$$
F I X f=f(F I X f)
$$

Then

$$
F A C \equiv F I X \quad F A C^{\prime}
$$

is a valid definition, assuming $F I X$ can be defined.

Questions

1. Does a function like FIX exist?
2. Does every function even have a fixed point?
3. If $F I X$ exists, can it be defined in the λ-calculus?

Answer Q2 (1)

Does every function have a fixed point?

Answer Q2 (1)

Does every function have a fixed point?
If we work with with functions on ordinary sets, clearly not! E.g.

$$
x=\operatorname{not} x
$$

does not have a solution in the set $\{$ False, True $\}$.

Answer Q2 (1)

Does every function have a fixed point?
If we work with with functions on ordinary sets, clearly not! E.g.

$$
x=\operatorname{not} x
$$

does not have a solution in the set $\{$ False, True $\}$.
Similarly, there is no $n \in \mathbb{N}$ such that

$$
n=s u c c n
$$

Answer Q2 (2)

But there is a solution of we turn to domain theory and consider functions over pointed domains that have a specific bottom element \perp denoting divergence, non-termination:

$$
\begin{aligned}
& \perp=\text { not } \perp \\
& \perp=\text { succ } \perp
\end{aligned}
$$

Answer Q2 (2)

But there is a solution of we turn to domain theory and consider functions over pointed domains that have a specific bottom element \perp denoting divergence, non-termination:

$$
\begin{aligned}
& \perp=\text { not } \perp \\
& \perp=\text { succ } \perp
\end{aligned}
$$

In general, domain theory allows for an additional possible result, \perp, which is the lest element, meaning all functions have a unique least fixed point in that setting.

Answer Q1 \& Q3

Yes and yes: a function for computing fixed points in general exists and it can be defined in the lambda calculus.

Answer Q1 \& Q3

Yes and yes: a function for computing fixed points in general exists and it can be defined in the lambda calculus.
Many possibilities. The call-by-name fixed-point combinator Y is probably the most famous and simplest:

$$
Y \equiv \lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Answer Q1 \& Q3

Yes and yes: a function for computing fixed points in general exists and it can be defined in the lambda calculus.
Many possibilities. The call-by-name fixed-point combinator Y is probably the most famous and simplest:

$$
Y \equiv \lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Let's verify $Y F=F(Y F)$ for any F (on the white board).

Back to Factorial

Now we can define:

$$
F A C \equiv Y F A C^{\prime}
$$

Fixed Point Combinators in Real Life

- In denotational semantics, the meaning of recursion and iteration is given in terms of fixed point constructions.
- In langauges like Haskell, fix can easily be defined (see example).
- Variations of fixed point operators are quite often used in practice; e.g. for monadic fixed points (see later).

