Name Capture

LiU-FP2016: Lecture 4

The Untyped λ-calculus: Operational
Semantics and Reduction Orders
Henrik Nilsson

University of Nottingham, UK

We have seen that there are some caveats with substitution:

- Must only substitute for free variables:

$$
[x \mapsto t](\lambda x . x) \neq \lambda x . t
$$

- Must avoid name capture:

$$
[x \mapsto y](\lambda y \cdot x) \neq \lambda y . y
$$

"Substitution" almost always means capture-avoiding substitution.

Recall that

$$
[x \mapsto t] F
$$

means "substitute t for free occurrences of x in F.

$$
[x \mapsto y](\lambda x \cdot x)=
$$

$$
[x \mapsto y](\lambda y . x)
$$

where s, t and indexed variants denote lambda-terms; x y, and z denote variables; FV (t) denotes the free variables of term t; and \equiv denotes syntactic equality.

$$
\begin{aligned}
& {[x \mapsto s] y= \begin{cases}s, & \text { if } x \equiv y \\
y, & \text { if } x \not \equiv y\end{cases} } \\
& {[x \mapsto s]\left(t_{1} t_{2}\right)=\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right)} \\
& {[x \mapsto s](\lambda y . t)= \begin{cases}\lambda y \cdot t, & \text { if } x \equiv y \\
\lambda y \cdot[x \mapsto s] t, & \text { if } x \not \equiv y \wedge y \notin \mathrm{FV}(s) \\
\lambda z \cdot[x \mapsto s]([y \mapsto z] t), & \text { if } x \not \equiv y \wedge y \in \mathrm{FV}(s), \\
& \text { where } z \text { is fresh }\end{cases} }
\end{aligned}
$$

Capture-Avoiding Substitution (2)

The condition " z is fresh" can be relaxed:

$$
z \not \equiv x \wedge z \notin F V(s) \wedge z \notin F V(t)
$$

is enough.

α - and η-conversion

- Renaming bound variables is known as α-conversion. E.g.

$$
(\lambda x \cdot x) \underset{\alpha}{\leftrightarrow}(\lambda y . y)
$$

- Note that $(\lambda x . F x) G \underset{\beta}{\rightarrow} F G$ if x not free in F. This justifies η-conversion:

$$
\lambda x . F x \underset{\eta}{\overleftrightarrow{\leftrightarrow}} F \quad \text { if } x \notin \mathrm{FV}(F)
$$

Capture-Avoiding Substitution (3)

A slight variation:

$$
\begin{aligned}
{[x \mapsto s] y } & = \begin{cases}s, & \text { if } x \equiv y \\
y, & \text { if } x \not \equiv y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right) } & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{2}\right) \\
{[x \mapsto s](\lambda y \cdot t) } & = \begin{cases}\lambda y \cdot t, & \text { if } x \equiv y \\
\lambda y \cdot[x \mapsto s] t, & \text { if } x \not \equiv y \wedge y \notin \mathrm{FV}(s) \\
{[x \mapsto s](\lambda z \cdot[y \mapsto z] t),} & \text { if } x \not \equiv y \wedge y \in \mathrm{FV}(s), \\
& \text { where } z \notin \mathrm{FV}(s) \\
\wedge z \notin \mathrm{FV}(t)\end{cases}
\end{aligned}
$$

Homework: Why isn't $z \not \equiv x$ needed in this case?

Lui-fp2016: Lecture 4-p.6.21
 Capture-Avoiding Substitution (4)

If we adopt the convention that terms that differ only in the names of bound variables are interchangeable in all contexts, then the following partial definition can be used as long as it is understood that an α-conversion has to be carried out if no case applies:

$$
\begin{aligned}
{[x \mapsto s] y } & = \begin{cases}s, & \text { if } x \equiv y \\
y, & \text { if } x \not \equiv y\end{cases} \\
{[x \mapsto s]\left(t_{1} t_{2}\right) } & =\left([x \mapsto s] t_{1}\right)\left([x \mapsto s] t_{1}\right) \\
{[x \mapsto s](\lambda y . t) } & =\lambda y .[x \mapsto s] t, \quad \text { if } x \not \equiv y \wedge y \notin \mathrm{FV}(s)
\end{aligned}
$$

Op. Semantics: Call-By-Value (1)

Abstract syntax:

t	\rightarrow		terms:
		x	variable
		$\lambda x . t$	abstraction
$t t$	application		

Values:

$$
\begin{array}{rrr}
v \rightarrow r & \text { values: } \\
& \lambda x . t & \text { abstraction value }
\end{array}
$$

Op. Semantics: Full β-reduction

Operational semantics for full β-reduction (non-deterministic). Syntax as before, but the syntactic category of values not used:

$$
\begin{aligned}
& \frac{t_{1}}{t_{1} t_{2}} \longrightarrow t_{1}^{\prime} \\
& \frac{t_{2}}{} \longrightarrow t_{1}^{\prime} t_{2} \\
& t_{1} t_{2} \text { (E-APP1) } \\
&\left(\lambda x t_{1}^{\prime} t_{2}^{\prime}\right.\text { (E-APP2) } \left.t_{1}\right) t_{2} \\
& \longrightarrow\left[x \mapsto t_{2}\right] t_{1} \quad(\mathrm{E}-\mathrm{APPABS})
\end{aligned}
$$

Op. Semantics: Call-By-Value (2)

Call-by-value operational semantics:

$$
\begin{aligned}
& \frac{t_{1}}{t_{1} t_{2}} \longrightarrow t_{1}^{\prime} \\
& \frac{t_{2}}{v_{1} t_{2}} \longrightarrow t_{2}^{\prime} \quad(\mathrm{E}-\mathrm{APP} 1) \\
&(\lambda x . t) v \longrightarrow[x \mapsto v] t \quad(\mathrm{E}-\mathrm{APPABS})
\end{aligned}
$$

Normal-order operational semantics is somewhat awkward to specify. Like full β-reduction, except left-most, outermost redex first.

Op. Semantics: Call-By-Name

Call-by-name like normal order, but no evaluation under λ :

$$
\begin{gathered}
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \quad(\mathrm{E}-\mathrm{APP} 1) \\
\left(\lambda x . t_{1}\right) t_{2} \longrightarrow\left[x \mapsto t_{2}\right] t_{1} \quad(\mathrm{E}-\mathrm{APPABS})
\end{gathered}
$$

Note: Argument not evaluated "prior to call"!

Questions:

- Do we get the same result (modulo termination issues) regardless of evaluation order?
- Which order is "better"?

Call-By-Value vs. Call-By-Name (1)

Exercises:

1. Evaluate the following term both by call-by-name and call-by-value:

$$
(\lambda x . \lambda y \cdot y)((\lambda z . z z)(\lambda z . z z))
$$

2. For some term t and some value v, suppose $t \xrightarrow[\beta]{*} v$ in, say 100 steps. Consider $(\lambda x . x x) t$ under both call-by-value and call-by-name. How many steps of evaluation in the two cases? (Roughly)

LiU-FP2016: Lecture 4-p.14/21
 The Church-Rosser Theorems (1)

Church-Rosser Theorem I:
For all λ-calculus terms t, t_{1}, and t_{2} such that $t \underset{\beta}{\stackrel{*}{\rightarrow}} t_{1}$ and $t \underset{\beta}{*} t_{2}$, there exists a term t_{3} such that $t_{1} \xrightarrow[\beta]{*} t_{3}$ and $t_{2} \underset{\beta}{*} t_{3}$.
That is, β-reduction is confluent.
This is also known as the "diamond property".

The Church-Rosser Theorems (2)

Church-Rosser Theorem II:

If $t_{1} \xrightarrow[\beta]{*} t_{2}$ and t_{2} is a normal form (no
redexes), then t_{1} will reduce to t_{2} under normal-order reduction.

- In terms of reduction steps (fewer is more efficient), none is strictly better than the other.
E.g.:
- Call-by-value may run forever on a term where normal-order would terminate.
- Normal-order often duplicates redexes (by substitution of reducible expressions for variables), thereby possibly duplicating work, something that call-by-value avoids.

Which Reduction Order? (1)

So, which reduction order is "best"?

- Depends on the application. Sometimes reduction under λ needed, sometimes not.
- Normal-order reduction has the best possible termination properties: if a term has a normal form, normal-order reduction will find it.

Lazy evaluation is an implementation technique that seeks to combine the advantages of the various orders by:

- evaluate on demand only, but
- evaluate any one redex at most once (avoiding duplication of work)
Idea: Graph Reduction to avoid duplication by explicit sharing of redexes.

Lazy Evaluation (2)

Result: normal-order/call-by-need semantics, but efficiency closer to call-by-value (when call-by-value doesn't do unnecessary work). However, there are inherent implementation overheads of lazy evaluation.

Lazy evaluation is used in languages like Haskell.

