LiU-FP2016: Lecture 4 The Untyped λ -calculus: Operational

Semantics and Reduction Orders

Henrik Nilsson

University of Nottingham, UK

Name Capture

Recall that

 $\label{eq:substitute} [x\mapsto t]F$ means "substitute t for free occurrences of x in F.

 $[x \mapsto y](\lambda x.x) =$

 $[x\mapsto y](\lambda y.x)$

UU-FP2016: Lecture 4 – p.1/21

Capture-Avoiding Substitution (1)

$$\begin{split} [x\mapsto s]y &= \begin{cases} s, & \text{if } x \equiv y \\ y, & \text{if } x \neq y \end{cases} \\ [x\mapsto s](t_1 \ t_2) &= ([x\mapsto s]t_1) \ ([x\mapsto s]t_2) \\ \\ [x\mapsto s](\lambda y.t) &= \begin{cases} \lambda y.t, & \text{if } x \equiv y \\ \lambda y.[x\mapsto s]t, & \text{if } x \neq y \land y \notin \text{FV}(s) \\ \lambda z.[x\mapsto s]([y\mapsto z]t), & \text{if } x \neq y \land y \in \text{FV}(s), \end{cases} \\ \\ \end{split}$$

where s, t and indexed variants denote lambda-terms; x, y, and z denote variables; FV(t) denotes the free variables of term t; and \equiv denotes syntactic equality.

α - and η -conversion

• *Renaming bound variables* is known as *α-conversion*. E.g.

 $(\lambda x.x) \leftrightarrow (\lambda y.y)$

• Note that $(\lambda x.F x) G \xrightarrow{\beta} F G$ if x not free in F. This justifies η -conversion:

 $\lambda x.F \ x \underset{n}{\leftrightarrow} F \quad \text{if } x \notin FV(F)$

Capture-Avoiding Substitution (2)

The condition "z is fresh" can be relaxed:

 $z \not\equiv x \land z \notin FV(s) \land z \notin FV(t)$

is enough.

LU-F75016: Lacture 4 – p.521

Capture-Avoiding Substitution (4)

If we adopt the convention that terms that differ only in the names of bound variables are interchangeable in all contexts, then the following *partial* definition can be used as long as it is understood that an α -conversion has to be carried out if no case applies:

$$\begin{split} [x\mapsto s]y &= \begin{cases} s, & \text{if } x\equiv y\\ y, & \text{if } x\neq y \end{cases}\\ [x\mapsto s](t_1\ t_2) &= ([x\mapsto s]t_1)\ ([x\mapsto s]t_1)\\ [x\mapsto s](\lambda y.t) &= \lambda y.[x\mapsto s]t, & \text{if } x\neq y \wedge y\notin \mathrm{FV}(s) \end{split}$$

Substitution Caveats

We have seen that there are some caveats with substitution:

• Must only substitute for free variables:

 $[x \mapsto t](\lambda x.x) \neq \lambda x.t$

• Must avoid *name capture*:

 $[x \mapsto y](\lambda y.x) \neq \lambda y.y$

"Substitution" almost always means capture-avoiding substitution.

LU-FP2016: Ledure 4 - p.3.21

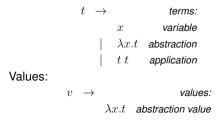
Capture-Avoiding Substitution (3)

A slight variation:

 $[x \mapsto s]y = \begin{cases} s, & \text{if } x \equiv y \\ y, & \text{if } x \neq y \end{cases}$ $[x \mapsto s](t_1 t_2) = ([x \mapsto s]t_1) ([x \mapsto s]t_2)$ $\begin{bmatrix} \lambda y.t, & \text{if } x \equiv y \\ \lambda y.[x \mapsto s]t, & \text{if } x \neq y \land y \notin FV(s) \end{bmatrix}$ $[x \mapsto s](\lambda z.[y \mapsto z]t), & \text{if } x \neq y \land y \in FV(s), \\ \text{where } z \notin FV(s) \\ \land z \notin FV(t) \end{cases}$ Homework: Why isn't $z \neq x$ needed in this case?

Op. Semantics: Call-By-Value (1)

Abstract syntax:



0 0 0 LIU-FP2016: Lecture 4 - p.9/21

Op. Semantics: Call-By-Value (2)

Call-by-value operational semantics:

$$\frac{t_1 \longrightarrow t'_1}{t_1 \ t_2 \longrightarrow t'_1 \ t_2}$$
(E-APP1)
$$\frac{t_2 \longrightarrow t'_2}{v_1 \ t_2 \longrightarrow v_1 \ t'_2}$$
(E-APP2)

 $(\lambda x.t) \ v \longrightarrow [x \mapsto v]t$ (E-APPABS)

o
o
o
LIU-FP2016: Lecture 4 – p. 13/21

Op. Semantics: Call-By-Name

Call-by-name like normal order, but no evaluation under λ :

$$\frac{t_1 \longrightarrow t'_1}{t_1 \ t_2 \longrightarrow t'_1 \ t_2}$$
(E-APP1)

 $(\lambda x.t_1) t_2 \longrightarrow [x \mapsto t_2]t_1$ (E-APPABS)

Note: Argument not evaluated "prior to call"!

The Church-Rosser Theorems (1)

Church-Rosser Theorem I:

For all λ -calculus terms t, t_1 , and t_2 such that $t \stackrel{*}{\xrightarrow{\beta}} t_1$ and $t \stackrel{*}{\xrightarrow{\beta}} t_2$, there exists a term t_3 such that $t_1 \stackrel{*}{\xrightarrow{\beta}} t_3$ and $t_2 \stackrel{*}{\xrightarrow{\beta}} t_3$.

That is, β -reduction is *confluent*.

This is also known as the "diamond property".

Op. Semantics: Full β **-reduction**

Operational semantics for full β -reduction (non-deterministic). Syntax as before, but the syntactic category of values not used:

$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2}$	(E-APP1)
$\frac{t_2 \longrightarrow t'_2}{t_1 \ t_2 \longrightarrow t_1 \ t'_2}$	(E-APP2)

$$(\lambda x.t_1) t_2 \longrightarrow [x \mapsto t_2]t_1$$
 (E-APPABS)

Call-By-Value vs. Call-By-Name (1)

Exercises:

1. Evaluate the following term both by call-by-name and call-by-value:

$(\lambda x.\lambda y.y) ((\lambda z.z \ z) \ (\lambda z.z \ z))$

- 2. For some term *t* and some value *v*, suppose $t \stackrel{*}{\rightarrow} v$ in, say 100 steps. Consider $(\lambda x.x x) t$
 - under both call-by-value and call-by-name. How many steps of evaluation in the two cases? (Roughly)

The Church-Rosser Theorems (2)

Church-Rosser Theorem II:

If $t_1 \stackrel{*}{\xrightarrow{\beta}} t_2$ and t_2 is a normal form (no redexes), then t_1 will reduce to t_2 under normal-order reduction.

Op. Semantics: Normal-Order

Normal-order operational semantics is somewhat awkward to specify. Like full β -reduction, except left-most, outermost redex first.

Call-By-Value vs. Call-By-Name (2)

Questions:

• Do we get the same result (modulo termination issues) regardless of evaluation order?

0 0 0 LIU-FP2016: Lecture 4 - p.18/21

· Which order is "better"?

Which Reduction Order? (1)

So, which reduction order is "best"?

- Depends on the application. Sometimes reduction under λ needed, sometimes not.
- Normal-order reduction has the best possible termination properties: if a term has a normal form, normal-order reduction will find it.

0 0 0 0 LIU-FP2016: Lecture 4 - p.14/21

Which Reduction Order? (2)

- In terms of reduction steps (fewer is more efficient), none is strictly better than the other.
 E.g.:
 - Call-by-value may run forever on a term where normal-order would terminate.
 - Normal-order often duplicates redexes (by substitution of reducible expressions for variables), thereby possibly duplicating work, something that call-by-value avoids.

Lazy Evaluation (1)

Lazy evaluation is an implementation

technique that seeks to combine the advantages of the various orders by:

- evaluate on demand only, but
- evaluate any one redex at most once (avoiding duplication of work)

Idea: *Graph Reduction* to avoid duplication by explicit sharing of redexes.

LU FP2016: Luture 4 - p.1921 LU FP2016: Luture 4 - p.2021

Lazy Evaluation (2)

Result: normal-order/call-by-need semantics, but efficiency closer to call-by-value (when call-by-value doesn't do unnecessary work). However, there are inherent implementation overheads of lazy evaluation.

Lazy evaluation is used in languages like Haskell.

LU FP2016: Lodors 4 - p 21 (21