
LiU-FP2016: Lecture 4
The Untyped λ-calculus: Operational

Semantics and Reduction Orders

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 4 – p.1/21

Name Capture

Recall that

[x 7→ t]F

means “substitute t for free occurrences of x in F .

[x 7→ y](λx.x) =

[x 7→ y](λy.x)

LiU-FP2016: Lecture 4 – p.2/21

Substitution Caveats

We have seen that there are some caveats with
substitution:

• Must only substitute for free variables:

[x 7→ t](λx.x) 6= λx.t

• Must avoid name capture:

[x 7→ y](λy.x) 6= λy.y

“Substitution” almost always means
capture-avoiding substitution.

LiU-FP2016: Lecture 4 – p.3/21

Capture-Avoiding Substitution (1)

[x 7→ s]y =







s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

[x 7→ s](λy.t) =



























λy.t, if x ≡ y

λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

λz.[x 7→ s]([y 7→ z]t), if x 6≡ y ∧ y ∈ FV(s),

where z is fresh

where s, t and indexed variants denote lambda-terms; x,
y, and z denote variables; FV(t) denotes the free variables

of term t; and ≡ denotes syntactic equality.
LiU-FP2016: Lecture 4 – p.4/21

Capture-Avoiding Substitution (2)

The condition “z is fresh” can be relaxed:

z 6≡ x ∧ z /∈ FV (s) ∧ z /∈ FV (t)

is enough.

LiU-FP2016: Lecture 4 – p.5/21

Capture-Avoiding Substitution (3)

A slight variation:

[x 7→ s]y =







s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

[x 7→ s](λy.t) =







































λy.t, if x ≡ y

λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

[x 7→ s](λz.[y 7→ z]t), if x 6≡ y ∧ y ∈ FV(s),

where z /∈ FV(s)

∧ z /∈ FV(t)

Homework: Why isn’t z 6≡ x needed in this case?
LiU-FP2016: Lecture 4 – p.6/21

α- and η-conversion

• Renaming bound variables is known as
α-conversion. E.g.

(λx.x) ↔
α

(λy.y)

• Note that (λx.F x) G →
β
F G if x not free in F .

This justifies η-conversion:

λx.F x ↔
η
F if x /∈ FV(F)

LiU-FP2016: Lecture 4 – p.7/21

Capture-Avoiding Substitution (4)

If we adopt the convention that terms that differ only in the

names of bound variables are interchangeable in all

contexts, then the following partial definition can be used

as long as it is understood that an α-conversion has to be

carried out if no case applies:

[x 7→ s]y =







s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t1)

[x 7→ s](λy.t) = λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

LiU-FP2016: Lecture 4 – p.8/21

Op. Semantics: Call-By-Value (1)

Abstract syntax:

t → terms:

x variable

| λx.t abstraction

| t t application

Values:

v → values:

λx.t abstraction value

LiU-FP2016: Lecture 4 – p.9/21

Op. Semantics: Call-By-Value (2)

Call-by-value operational semantics:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

v1 t2 −→ v1 t
′
2

(E-APP2)

(λx.t) v −→ [x 7→ v]t (E-APPABS)

LiU-FP2016: Lecture 4 – p.10/21

Op. Semantics: Full β-reduction

Operational semantics for full β-reduction
(non-deterministic). Syntax as before, but the
syntactic category of values not used:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

t1 t2 −→ t1 t
′
2

(E-APP2)

(λx.t1) t2 −→ [x 7→ t2]t1 (E-APPABS)

LiU-FP2016: Lecture 4 – p.11/21

Op. Semantics: Normal-Order

Normal-order operational semantics is somewhat
awkward to specify. Like full β-reduction, except
left-most, outermost redex first.

LiU-FP2016: Lecture 4 – p.12/21

Op. Semantics: Call-By-Name

Call-by-name like normal order, but no evaluation
under λ:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

(λx.t1) t2 −→ [x 7→ t2]t1 (E-APPABS)

Note: Argument not evaluated “prior to call”!

LiU-FP2016: Lecture 4 – p.13/21

Call-By-Value vs. Call-By-Name (1)

Exercises:

1. Evaluate the following term both by
call-by-name and call-by-value:

(λx.λy.y) ((λz.z z) (λz.z z))

2. For some term t and some value v, suppose

t
∗
→
β
v in, say 100 steps. Consider (λx.x x) t

under both call-by-value and call-by-name.
How many steps of evaluation in the two
cases? (Roughly)

LiU-FP2016: Lecture 4 – p.14/21

Call-By-Value vs. Call-By-Name (2)

Questions:

• Do we get the same result (modulo termination
issues) regardless of evaluation order?

• Which order is “better”?

LiU-FP2016: Lecture 4 – p.15/21

The Church-Rosser Theorems (1)

Church-Rosser Theorem I:

For all λ-calculus terms t, t1, and t2 such

that t
∗
→
β
t1 and t

∗
→
β
t2, there exists a term

t3 such that t1
∗
→
β
t3 and t2

∗
→
β
t3.

That is, β-reduction is confluent.

This is also known as the “diamond property”.

LiU-FP2016: Lecture 4 – p.16/21

The Church-Rosser Theorems (2)

Church-Rosser Theorem II:

If t1
∗
→
β
t2 and t2 is a normal form (no

redexes), then t1 will reduce to t2 under
normal-order reduction.

LiU-FP2016: Lecture 4 – p.17/21

Which Reduction Order? (1)

So, which reduction order is “best”?

• Depends on the application. Sometimes
reduction under λ needed, sometimes not.

• Normal-order reduction has the best possible
termination properties: if a term has a normal
form, normal-order reduction will find it.

LiU-FP2016: Lecture 4 – p.18/21

Which Reduction Order? (2)

• In terms of reduction steps (fewer is more
efficient), none is strictly better than the other.
E.g.:

- Call-by-value may run forever on a term
where normal-order would terminate.

- Normal-order often duplicates redexes (by
substitution of reducible expressions for
variables), thereby possibly duplicating
work, something that call-by-value avoids.

LiU-FP2016: Lecture 4 – p.19/21

Lazy Evaluation (1)

Lazy evaluation is an implementation
technique that seeks to combine the
advantages of the various orders by:

• evaluate on demand only, but

• evaluate any one redex at most once
(avoiding duplication of work)

Idea: Graph Reduction to avoid duplication by
explicit sharing of redexes.

LiU-FP2016: Lecture 4 – p.20/21

Lazy Evaluation (2)

Result: normal-order/call-by-need semantics, but
efficiency closer to call-by-value (when
call-by-value doesn’t do unnecessary work).
However, there are inherent implementation
overheads of lazy evaluation.

Lazy evaluation is used in languages like Haskell.

LiU-FP2016: Lecture 4 – p.21/21

	Name Capture
	Substitution Caveats
	Capture-Avoiding Substitution (1)
	Capture-Avoiding Substitution (2)
	Capture-Avoiding Substitution (3)
	$alpha $- and $eta $-conversion
	Capture-Avoiding Substitution (4)
	Op. Semantics: Call-By-Value (1)
	Op. Semantics: Call-By-Value (2)
	Op. Semantics: Full $�eta $-reduction
	Op. Semantics: Normal-Order
	Op. Semantics: Call-By-Name
	Call-By-Value vs. Call-By-Name (1)
	Call-By-Value vs. Call-By-Name (2)
	The Church-Rosser Theorems (1)
	The Church-Rosser Theorems (2)
	Which Reduction Order? (1)
	Which Reduction Order? (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)

