LiU-FP2016: Lecture 6

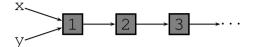
Purely Functional Data Structures

Henrik Nilsson

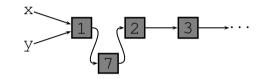
University of Nottingham, UK

Purely Functional Data structures (2)

Linked list:



After insert, if ephemeral:



Purely Functional Data structures (1)

Why is there a need to consider purely functional data structures?

- The standard implementations of many data structures assume imperative update. To what extent truly necessary?
- Purely functional data structures are *persistent*, while imperative ones are *ephemeral*:
 - Persistence is a useful property in its own right.
 - Can't expect added benefits for free.

LiU-FP2016: Lecture 6 – p.2/40

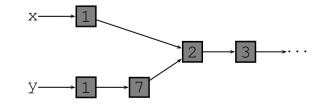
LiU-FP2016: Lecture 6 - p.1/40

Purely Functional Data structures (3)

Linked list:



After insert, if persistent:



Purely Functional Data structures (4)

This lecture draws from:

Chris Okasaki. *Purely Functional Data Structures*. Cambridge University Press, 1998.

We will look at some examples of how *numerical representations* can be used to derive purely functional data structures.

Numerical Representations (1)

Strong analogy between lists and the usual representation of natural numbers:

data List a =		data Nat =
Nil		Zero
Cons a (List	a)	Succ Nat
tail (Cons _ xs) =	XS	pred (Succ n) = n
append Nil	ys = ys	plus Zero n = n
append (Cons x xs)	ys =	plus (Succ m) n =
Cons x (append	xs ys)	Succ (plus m n)

Numerical Representations (2)

This analogy can be taken further for designing *container* structures because:

- inserting an element resembles incrementing a number
- combining two containers resembles adding two numbers

etc.

LiU-FP2016: Lecture 6 - p.5/40

LiU-FP2016: Lecture 6 - p.6/40

Thus, representations of natural numbers with certain properties induce container types with similar properties. Called *Numerical Representations*.

LiU-FP2016: Lecture 6 - p.7/40

LiU-FP2016: Lecture 6 - p.8/40

Random Access Lists

We will consider *Random Access Lists* in the following. Signature:

data RList a

L
RList a

Positional Number Systems (1)

- A number is written as a *sequence* of *digits* b₀b₁...b_{m-1}, where b_i ∈ D_i for a fixed family of digit sets given by the positional system.
- b_0 is the *least significant* digit, b_{m-1} the *most significant* digit (note the ordering).
- Each digit b_i has a **weight** w_i . Thus:

value
$$(b_0 b_1 \dots b_{m-1}) = \sum_{0}^{m-1} b_i w_i$$

LiU-FP2016: Lecture 6 - p.9/40

LiU-EP2016: Lecture 6 - p 10/40

where the fixed sequence of weights w_i is given by the positional system.

Positional Number Systems (2)

- A number is written written in **base** B if $w_i = B^i$ and $D_i = \{0, \dots, B-1\}$.
- The sequence w_i is usually, but not necessarily, increasing.
- A number system is *redundant* if there is more than one way to represent some numbers (disallowing trailing zeroes).
- A representation of a positional number system can be *dense*, meaning including zeroes, or *sparse*, eliding zeroes.

Exercise 1: Positional Number Systems

Suppose $w_i = 2^i$ and $D_i = \{0, 1, 2\}$. Give three different ways to represent 17.

Exercise 1: Solution

- 10001, since value $(10001) = 1 \cdot 2^0 + 1 \cdot 2^4$
- 1002, since value $(1002) = 1 \cdot 2^0 + 2 \cdot 2^3$
- 1021, since value $(1021) = 1 \cdot 2^0 + 2 \cdot 2^2 + 1 \cdot 2^3$
- 1211, since value(1211) = $1 \cdot 2^0 + 2 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3$

LiLI-EP2016: Lecture 6 - p 11/40

From Positional System to Container

Given a positional system, a numerical representation may be derived as follows:

- for a container of size n, consider a representation $b_0b_1 \dots b_{m-1}$ of n,
- represent the collection of n elements by a sequence of trees of size w_i such that there are b_i trees of that size.

For example, given the positional system of exercise 1, a container of size 17 might be represented by 1 tree of size 1, 2 trees of size 2, 1 tree of size 4, and 1 tree of size 8.

What Kind of Trees?

The kind of tree should be chosen depending on needed sizes and properties. Two possibilities:

Complete Binary Leaf Trees

```
data Tree a = Leaf a
| Node (Tree a) (Tree a)
```

Sizes: $2^n, n \ge 0$

Complete Binary Trees

data Tree a = Leaf a

| Node (Tree a) a (Tree a)

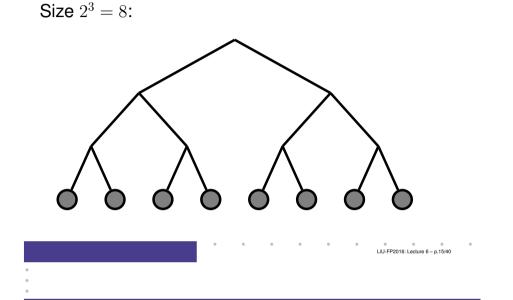
Sizes: $2^{n+1} - 1, n \ge 0$

(Balance has to be ensured separately.)

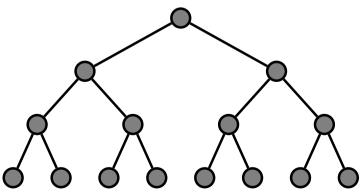
LiU-FP2016: Lecture 6 – p.14/40

LiU-FP2016: Lecture 6 - p.13/40

Example: Complete Binary Leaf Tree



Example: Complete Binary Tree



Binary Random Access Lists (1)

Binary Random Access Lists are induced by

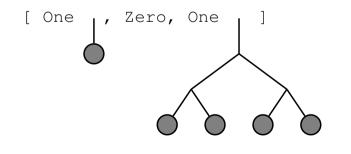
- the usual binary representation, i.e. $w_i = 2^i$, $D_i = \{0, 1\}$
- complete binary leaf trees

Thus:

The Int field keeps track of tree size for speed.

Binary Random Access Lists (2)

Example: Binary Random Access List of size 5:



Binary Random Access Lists (3)

The increment function on dense binary numbers:

inc [] = [One]
inc (Zero : ds) = One : ds
inc (One : ds) = Zero : inc ds -- Carry

Binary Random Access Lists (4)

Inserting an element first in a binary random access list is analogous to inc:

```
cons :: a -> RList a -> RList a
cons x ts = consTree (Leaf x) ts
consTree :: Tree a -> RList a -> RList a
consTree t [] = [One t]
consTree t (Zero : ts) = (One t : ts)
consTree t (One t' : ts) =
    Zero : consTree (link t t') ts
```

LiU-FP2016: Lecture 6 - p.17/40

LiU-FP2016: Lecture 6 - p.19/40

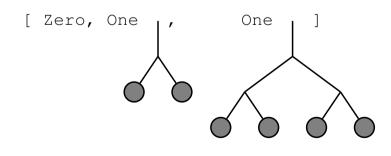
Binary Random Access Lists (5)

The utility function $\verb"link"$ joins two equally sized trees:

-- t1 and t2 are assumed to be the same size link t1 t2 = Node (2 \star size t1) t1 t2

Binary Random Access Lists (6)

Example: Result of consing element onto list of size 5:



Exercise 2: unconsTree

The decrement function on dense binary numbers:

dec [One] = []
dec (One : ds) = Zero : ds
dec (Zero : ds) = One : dec ds -- Borrow

Define unconsTree following the above pattern:

unconsTree :: RList a -> (Tree a, RList a)

And then head and tail:

head :: RList a -> a
tail :: RList a -> RList a

LiU-FP2016: Lecture 6 – p.23/40

Exercise 2: Solution (1)

```
unconsTree :: RList a -> (Tree a, RList a)
unconsTree [One t] = (t, [])
unconsTree (One t : ts) = (t, Zero : ts)
unconsTree (Zero : ts) = (t1, One t2 : ts')
where
        (Node _ t1 t2, ts') = unconsTree ts
```

Note: partial operation.

LiU-EP2016: Lecture 6 - n 21/40

Exercise 2: Solution (2)

```
head :: RList a -> a
head ts = x
where
    (Leaf x, _) = unconsTree ts
```

```
tail :: RList a -> RList a
tail ts = ts'
where
   (_, ts') = unconsTree ts
```

Binary Random Access Lists (7)

Lookup is done in two stages: first find the right tree, then lookup in that tree:

Note: partial operation.

Binary Random Access Lists (8)

The operation ${\tt update}$ has exactly the same structure.

Binary Random Access Lists (9)

Time complexity:

- cons, head, tail, perform O(1) work per digit, thus $O(\log n)$ worst case.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Time complexity for cons, head, tail disappointing: can we do better?

LiU-EP2016: Lecture 6 - p 25/40

LiU-FP2016: Lecture 6 - p.27/40

Skew Binary Numbers (1)

Skew Binary Numbers:

- $w_i = 2^{i+1} 1$ (rather than 2^i)
- $D_i = \{0, 1, 2\}$

Representation is redundant. But we obtain a *canonical form* if we insist that only the least significant non-zero digit may be 2.

Note: The weights correspond to the sizes of *complete* binary trees.

Skew Binary Numbers (2)

Theorem: Every natural number n has a unique skew binary canonical form. Proof sketch. By induction on n.

• Base case: the case for 0 is direct.

Skew Binary Numbers (3)

- Inductive case. Assume n has a unique skew binary representation $b_0b_1 \dots b_{m-1}$
 - If the least significant non-zero digit is smaller than 2, then n + 1 has a unique skew binary representation obtained by adding 1 to the least significant digit b_0 .
 - If the least significant non-zero digit b_i is 2, then note that $1 + 2(2^{i+1} - 1) = 2^{i+2} - 1$. Thus n + 1 has a unique skew binary representation obtained by setting b_i to 0 and adding 1 to b_{i+1} .

Exercise 3: Skew Binary Numbers

- Give the canonical skew binary representation for 31, 30, 29, and 28.
- Assume a *sparse* skew binary representation of the natural numbers

type Nat = [Int]

where the integers represent the *weight* of each *non-zero* digit. Assume further that the integers are stored in increasing order, except that the first two may be equal indicating that the smallest non-zero digit is 2. Implement a function inc to increment a natural number.

LiU-FP2016: Lecture 6 – n 29/40

LiU-FP2016: Lecture 6 - p.31/40

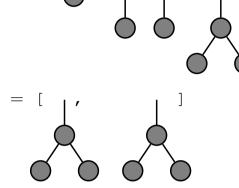
Exercise 3: Solution

• 00001, 0002, 0021, 0211

cons [[/] /

LiU-FP2016: Lecture 6 - p.33/40

LiU-EP2016: Lecture 6 - n 34/40



Example: Consing onto list of size 5:

LiU-FP2016: Lecture 6 – p.35/40

Skew Binary Random Access Lists (1)

data Tree a = Leaf a | Node (Tree a) a (Tree a)
type RList a = [(Int, Tree a)]

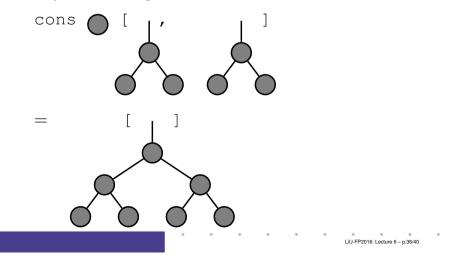
empty :: RList a
empty = []

cons :: a -> RList a -> RList a
cons x ((w1, t1) : (w2, t2) : wts) | w1 == w2 =
 (w1 * 2 + 1, Node t1 x t2) : wts
cons x wts = ((1, Leaf x) : wts)

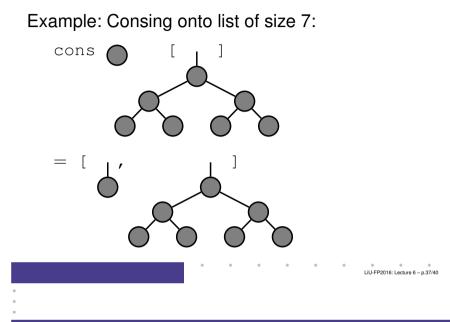
Skew Binary Random Access Lists (3)

Skew Binary Random Access Lists (2)

Example: Consing onto list of size 6:



Skew Binary Random Access Lists (4)



Skew Binary Random Access Lists (5)

```
head :: RList a -> a
head ((_, Leaf x) : _) = x
head ((_, Node _ x _) : _) = x
```

```
tail :: RList a -> RList a
tail ((_, Leaf _): wts) = wts
tail ((w, Node t1 _ t2) : wts) =
    (w', t1) : (w', t2) : wts
    where
```

```
w' = w 'div' 2
```

Note: again, partial operations.

LiU-FP2016: Lecture 6 – p.38/40

Skew Binary Random Access Lists (6)

```
lookup :: Int -> RList a -> a
lookup i ((w, t) : wts)
  | i < w = lookupTree i w t
  | otherwise = lookup (i - w) wts
lookupTree :: Int -> Int -> Tree a -> a
lookupTree _ _ (Leaf x) = x
lookupTree i w (Node t1 x t2)
  | i == 0 = x
  | i <= w' = lookupTree (i - 1) w' t1
  | otherwise = lookupTree (i - w' - 1) w' t2
  where
  w' = w `div` 2
```

Skew Binary Random Access Lists (7)

Time complexity:

- cons, head, tail: O(1).
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Okasaki:

"Although there are better implementations of lists, and better implementations of (persistent) arrays, none are better at both."

LiU-FP2016: Lecture 6 - p.40/40