LiU-FP2016: Lecture 6 Purely Functional Data Structures

Henrik Nilsson

University of Nottingham, UK

Purely Functional Data structures (1)

Why is there a need to consider purely functional data structures?

- The standard implementations of many data structures assume imperative update. To what extent truly necessary?
- Purely functional data structures are persistent, while imperative ones are ephemeral:
- Persistence is a useful property in its own right.
- Can't expect added benefits for free.

Purely Functional Data structures (2)

Linked list:

After insert, if ephemeral:

Purely Functional Data structures (3)

Linked list:

After insert, if persistent:

Purely Functional Data structures (4)

This lecture draws from:
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

We will look at some examples of how numerical representations can be used to derive purely functional data structures.

Numerical Representations (1)

Strong analogy between lists and the usual representation of natural numbers:

```
data List a =
    Nil
    | Cons a (List a)
tail (Cons _ xs) = xs
append (Cons x xs) ys =
    Cons x (append xs ys)
```

append Nil ys $=y s$ plus Zero $n \quad n$

```
data Nat =
    Zero
    | Succ Nat
pred (Succ n) = n
plus (Succ m) n =
    Succ (plus m n)
```


Numerical Representations (2)

This analogy can be taken further for designing container structures because:

- inserting an element resembles incrementing a number
- combining two containers resembles adding two numbers
etc.
Thus, representations of natural numbers with certain properties induce container types with similar properties. Called Numerical Representations.

Random Access Lists

We will consider Random Access Lists in the following. Signature:
data RList a
empty :: RList a
isEmpty : : RList a -> Bool
cons
:: a -> RList a -> RList a
head : : RList a -> a
tail
lookup
:: RList a -> RList a

Positional Number Systems (1)

- A number is written as a sequence of digits $b_{0} b_{1} \ldots b_{m-1}$, where $b_{i} \in D_{i}$ for a fixed family of digit sets given by the positional system.
- b_{0} is the least significant digit, b_{m-1} the most significant digit (note the ordering).
- Each digit b_{i} has a weight w_{i}. Thus:

$$
\text { value }\left(b_{0} b_{1} \ldots b_{m-1}\right)=\sum_{0}^{m-1} b_{i} w_{i}
$$

where the fixed sequence of weights w_{i} is given by the positional system.

Positional Number Systems (2)

- A number is written written in base B if $w_{i}=B^{i}$ and $D_{i}=\{0, \ldots, B-1\}$.
- The sequence w_{i} is usually, but not necessarily, increasing.
- A number system is redundant if there is more than one way to represent some numbers (disallowing trailing zeroes).
- A representation of a positional number system can be dense, meaning including zeroes, or sparse, eliding zeroes.

Exercise 1: Positional Number Systems

Suppose $w_{i}=2^{i}$ and $D_{i}=\{0,1,2\}$. Give three different ways to represent 17.

Exercise 1: Solution

- 10001, since value $(10001)=1 \cdot 2^{0}+1 \cdot 2^{4}$
- 1002, since value $(1002)=1 \cdot 2^{0}+2 \cdot 2^{3}$
- 1021, since value $(1021)=1 \cdot 2^{0}+2 \cdot 2^{2}+1 \cdot 2^{3}$
- 1211, since
value $(1211)=1 \cdot 2^{0}+2 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}$

From Positional System to Container

Given a positional system, a numerical representation may be derived as follows:

- for a container of size n, consider a representation $b_{0} b_{1} \ldots b_{m-1}$ of n,
- represent the collection of n elements by a sequence of trees of size w_{i} such that there are b_{i} trees of that size.

For example, given the positional system of exercise 1, a container of size 17 might be represented by 1 tree of size 1, 2 trees of size 2, 1 tree of size 4, and 1 tree of size 8.

What Kind of Trees?

The kind of tree should be chosen depending on needed sizes and properties. Two possibilities:

- Complete Binary Leaf Trees

```
data Tree a = Leaf a
    | Node (Tree a) (Tree a)
```

Sizes: $2^{n}, n \geq 0$

- Complete Binary Trees

$$
\begin{aligned}
\text { data Tree } a & =\text { Leaf } a \\
& \mid \text { Node (Tree a) a (Tree a) }
\end{aligned}
$$

Sizes: $2^{n+1}-1, n \geq 0$
(Balance has to be ensured separately.)

Example: Complete Binary Leaf Tree

Size $2^{3}=8$:

Example: Complete Binary Tree

Size $2^{4}-1=15$:

Binary Random Access Lists (1)

Binary Random Access Lists are induced by

- the usual binary representation, i.e. $w_{i}=2^{i}$,

$$
D_{i}=\{0,1\}
$$

- complete binary leaf trees

Thus:

```
data Tree a = Leaf a
    | Node Int (Tree a) (Tree a)
data Digit a = Zero | One (Tree a)
type RList a = [Digit a]
```

The Int field keeps track of tree size for speed.

Binary Random Access Lists (2)

Example: Binary Random Access List of size 5:

Binary Random Access Lists (3)

The increment function on dense binary numbers:

```
inc [] = [One]
inc (Zero : ds) = One : ds
inc (One : ds) = Zero : inc ds -- Carry
```


Binary Random Access Lists (4)

Inserting an element first in a binary random access list is analogous to inc:

```
cons :: a -> RList a -> RList a
cons x ts = consTree (Leaf x) ts
consTree :: Tree a -> RList a -> RList a
consTree t [] = [One t]
consTree t (Zero : ts) = (One t : ts)
consTree t (One t' : ts) =
    Zero : consTree (link t t') ts
```


Binary Random Access Lists (5)

The utility function link joins two equally sized trees:
-- t1 and t2 are assumed to be the same size link t1 t2 $=$ Node (2 * size t1) t1 t2

Binary Random Access Lists (6)

Example: Result of consing element onto list of size 5:

Exercise 2: unconsTree

The decrement function on dense binary numbers:

```
dec [One] = []
dec (One : ds) = Zero : ds
dec (Zero : ds) = One : dec ds -- Borrow
```

Define uncons Tree following the above pattern:

$$
\text { unconsTree : : RList } a \rightarrow \text { (Tree } a, \text { RList a) }
$$

And then head and tail:

```
head :: RList a -> a
tail :: RList a -> RList a
```


Exercise 2: Solution (1)

$$
\begin{aligned}
& \text { unconsTree : : RList a -> (Tree a, RList a) } \\
& \text { unconsTree [One } t \text {] }=(t,[]) \\
& \text { unconsTree (One } t: t s)=(t, \text { Zero : ts) } \\
& \text { unconsTree (Zero : ts) }=(\mathrm{t} 1, \text { One t2 : ts') } \\
& \text { where } \\
& \text { (Node _ t1 t2, ts') = unconsTree ts }
\end{aligned}
$$

Note: partial operation.

Exercise 2: Solution (2)

$$
\begin{aligned}
& \text { head : : RList } a->a \\
& \text { head ts }=x \\
& \text { where } \\
& \text { (Leaf } x, \quad, \text { = unconsTree ts } \\
& \text { tail : : RList a -> RList a } \\
& \text { tail ts }=\text { ts' } \\
& \text { where } \\
& \quad\left(_, ~ t s^{\prime}\right)=\text { unconsTree ts }
\end{aligned}
$$

Binary Random Access Lists (7)

Lookup is done in two stages: first find the right tree, then lookup in that tree:

```
lookup :: Int -> RList a -> a
lookup i (Zero : ts) = lookup i ts
lookup i (One t : ts)
    | i < s = lookupTree i t
    | otherwise = lookup (i - s) ts
    where
```

$$
\mathrm{s}=\text { size } \mathrm{t}
$$

Note: partial operation.

Binary Random Access Lists (8)

```
lookupTree :: Int -> Tree a -> a
lookupTree _ (Leaf x) = x
lookupTree i (Node w t1 t2)
    | i < w 'div' 2 =
                            lookupTree i t1
    | otherwise =
        lookupTree (i - w `div' 2) t2
```

The operation update has exactly the same structure.

Binary Random Access Lists (9)

Time complexity:

- cons, head, tail, perform $O(1)$ work per digit, thus $O(\log n)$ worst case.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Binary Random Access Lists (9)

Time complexity:

- cons, head, tail, perform $O(1)$ work per digit, thus $O(\log n)$ worst case.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Time complexity for cons, head, tail disappointing: can we do better?

Skew Binary Numbers (1)

Skew Binary Numbers:

- $w_{i}=2^{i+1}-1\left(\right.$ rather than $\left.2^{i}\right)$
- $D_{i}=\{0,1,2\}$

Representation is redundant. But we obtain a canonical form if we insist that only the least significant non-zero digit may be 2.

Note: The weights correspond to the sizes of complete binary trees.

Skew Binary Numbers (2)

Theorem: Every natural number n has a unique skew binary canonical form.
Proof sketch. By induction on n.

- Base case: the case for 0 is direct.

Skew Binary Numbers (3)

- Inductive case. Assume n has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$

Skew Binary Numbers (3)

- Inductive case. Assume n has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$
- If the least significant non-zero digit is smaller than 2 , then $n+1$ has a unique skew binary representation obtained by adding 1 to the least significant digit b_{0}.

Skew Binary Numbers (3)

- Inductive case. Assume n has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$
- If the least significant non-zero digit is smaller than 2 , then $n+1$ has a unique skew binary representation obtained by adding 1 to the least significant digit b_{0}.
- If the least significant non-zero digit b_{i} is 2 , then note that $1+2\left(2^{i+1}-1\right)=2^{i+2}-1$.
Thus $n+1$ has a unique skew binary representation obtained by setting b_{i} to 0 and adding 1 to b_{i+1}.

Exercise 3: Skew Binary Numbers

- Give the canonical skew binary representation for 31, 30, 29, and 28.
- Assume a sparse skew binary representation of the natural numbers
type Nat = [Int]
where the integers represent the weight of each non-zero digit. Assume further that the integers are stored in increasing order, except that the first two may be equal indicating that the smallest non-zero digit is 2. Implement a function inc to increment a natural number.

Exercise 3: Solution

- 00001, 0002, 0021, 0211
- inc : : Nat $->$ Nat
inc (w1 : w2 : ws)
$\mid \mathrm{w} 1==\mathrm{w} 2=\mathrm{w} 1 * 2+1: \mathrm{ws}$
inc ws $=1:$ ws

Skew Binary Random Access Lists (1)

data Tree $a=$ Leaf a \mid Node (Tree a) a (Tree a) type RList a = [(Int, Tree a)]
empty : : RList a
empty = []
cons : : a -> RList a -> RList a
cons $x((w 1, t 1):(w 2, t 2): w t s) \mid w 1==w 2=$ (wi * $2+1$, Node ti x th) : wt
cons x wets $=((1$, Leaf $x)$: wets)

Skew Binary Random Access Lists (2)

Example: Consing onto list of size 5 :

$$
\text { cons } O \text { c }
$$

Skew Binary Random Access Lists (3)

Example: Consing onto list of size 6:

Skew Binary Random Access Lists (4)

Example: Consing onto list of size 7:

$$
=\left[\emptyset^{\prime}\right.
$$

Skew Binary Random Access Lists (5)

head :: RList a -> a
head ((_, Leaf x) : _) $=x$
head ((_, Node _ x _) : _) = x
tail :: RList a -> RList a
tail ((_, Leaf _): wts) = wts
tail ((w, Node t1 - t2) : wts) = $\left(w^{\prime}, t 1\right):\left(w^{\prime}, t 2\right): ~ w t s$
where

$$
\mathrm{w}^{\prime}=\mathrm{w} \text { 'div' } 2
$$

Note: again, partial operations.

Skew Binary Random Access Lists (6)

lookup :: Int -> RList a -> a
lookup i ((w, t) : wts)

$$
\begin{array}{ll}
\text { | } \mathrm{i}<\mathrm{w} & =\text { lookupTree } \mathrm{i} \text { w } \mathrm{t} \\
\text { | otherwise } & =\text { lookup (i }-\mathrm{w}) \text { wts }
\end{array}
$$

lookupTree :: Int -> Int -> Tree a -> a
lookupTree $-\quad$ (Leaf x) $=\mathrm{x}$
lookupTree i w (Node t1 x t2)

$$
\begin{array}{ll}
\left\lvert\, \begin{array}{ll}
\mathrm{i}==0 & \mathrm{x} \\
\mathrm{I} & \mathrm{i}=\mathrm{w}^{\prime} \\
\text { | otherwise } & =\text { lookupTree }(\mathrm{i}-1) \mathrm{w}^{\prime} \mathrm{t} 1 \\
\text { lookupTree }\left(\mathrm{i}-\mathrm{w}^{\prime}-1\right) \mathrm{w}^{\prime} \mathrm{t} 2
\end{array}\right.
\end{array}
$$ where

$$
\mathrm{w}^{\prime}=\mathrm{w} \text { 'div' } 2
$$

Skew Binary Random Access Lists (7)

Time complexity:

- cons, head, tail: $O(1)$.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Skew Binary Random Access Lists (7)

Time complexity:

- cons, head, tail: O(1).
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Okasaki:
"Although there are better implementations of lists, and better implementations of (persistent) arrays, none are better at both."

