Example: A Compiler Fragment (1)

Identification is the task of relating each applied identifier occurrence to its declaration or definition:

In the body of set, the one applied occurrence of - x refers to the instance variable x

- n refers to the argument n .

Example: A Compiler Fragment (2)

Consider an AST Exp for a simple expression language. Exp is a parameterized type: the type parameter a allows variables to be annotated with at attribute of type a.
data Exp@a
$=$ LitInt
| Var
Id
। UnOpApp UnOp (Exp a)
| BinOpApp BinOp (Exp a) (Exp a)
If (Exp a) (Exp a) (Exp a)
Let [(Id, Type, Exp a)] (Exp a)

Example: A Compiler Fragment (3)

Example: The following code fragment

$$
\text { let int } x=7 \text { in } x+35
$$

would be represented like this (before identification):

$$
\begin{aligned}
& \text { Let }[(" x ", ~ I n t T y p e, ~ L i t I n t ~ 7)] ~ \\
& \text { (BinOpApp Plus } \\
&(\text { Var "x" ()) } \\
&(\text { LitInt 35)) }
\end{aligned}
$$

Goals of the identification phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration
l.e., map unannotated-AST-Exp () to annotated AST Exp Attr.
- Report conflicting variable definitions and
undefined variables.

Example: A Compiler Fragment (5)

Example: Before Identification

$$
\begin{array}{r}
\text { Let }[(" x ", \text { Int Type, LitInt 7)] } \\
\text { (BinOpApp Plus } \\
\text { (Var "x" ()) } \\
\text { (LitInt 35)) }
\end{array}
$$

After identification:

$$
\begin{aligned}
\text { Let } & {[(" x ", \text { Int Type, LitInt 7)] }} \\
& \text { (BinOpApp Plus } \\
& \text { (Var "x" (1, IntType)) }
\end{aligned}
$$

(LitInt 35))

Example: A Compiler Fragment (6)

enterVar inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the resulting environment is returned.
- Otherwise an error message is returned.

Functions that do the real work:

```
identAux :
```

 Int -> Env -> Exp ()
 -> (Exp Attr, [ErrorMsg])
 identDefs : :
 Int -> Env -> [(Id, Type, Exp ())
 -> ([(Id, Type, Exp Attr)],
 Env,
 [ErrorMsg])

Example: A Compiler Fragment (8)

identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) = ($\left(i, t, e^{\prime}\right)$: ds', env' ${ }^{\prime}, \mathrm{ms} 1++\mathrm{ms} 2++\mathrm{ms} 3$ where
(e', ms1) = identAux 1 env e (env', ms2) =
case enterVar i l t env of
Left env' -> (env', [])
Right m -> (env, [m])
(ds', env'', ms3) =
identDefs l env' $d s$

Example: A Compiler Fragment (9)

Error checking and collection of error messages arguably added a lot of clutter. The core of the algorithm is this:

$$
\begin{aligned}
& \text { identDefs } 1 \text { env [] = ([], env) } \\
& \text { identDefs } 1 \text { env ((i,t,e) : ds) }= \\
& \text { ((i,t, e') : ds', env' }{ }^{\prime} \text {) } \\
& \text { where } \\
& e^{\prime} \quad=\text { identAux } 1 \text { env e } \\
& \text { env' = enterVar i } 1 \text { t env } \\
& \text { (ds', env'') = identDefs l env' ds }
\end{aligned}
$$

Errors are just a side effect.

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an

object of type A.

- Thus we shall be both pure and impure, whatever takes our fancy!
- Monads originated in Category Theory.
- Adapted by
- Moggi for structuring denotational semantics
- Wadler for structuring functional programs

Answer to Conundrum: Monads (2)

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of real effects such as

- I/O

mutable state

This Lecture

Pragmatic introduction to monads:

- Effectful computations
- Identifying a common pattern
- Monads as a design pattern
data $\operatorname{Exp}=$ Lit Integer
| Add Exp Exp
| Sub Exp Exp
| Mul Exp Exp
| Div Exp Exp
eval :: Exp -> Integer
val (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2 \qquad

Making the Evaluator Safe (1)

```
data Maybe a = Nothing | Just a
data Maybe a = Nothing | Just a
```

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
case safeEval el of
Nothing -> Nothing
Just n1 ->
case safeEval e2 of
Nothing -> Nothing
Just n2 -> Just (n1 + n2)

Making the Evaluator Safe (2)

```
```

safeEval (Sub e1 e2) =

```
```

```
safeEval (Sub e1 e2) =
```

safeEval (sub el e2)

```
    case safeEval e1 of
    Nothing -> Nothing
    Just n1 ->
\[
\begin{aligned}
& \text { case safeEval e2 of } \\
& \text { Nothing -> Nothing }
\end{aligned}
\]

Nothing -> Nothing
Just n2 -> Just (n1 - n2)
safeEval :: Exp -> Maybe Integer
safeEval
case safeEval e1 of Nothing -> Nothing
case safeEval e2 of Just n2 -> Just (n1 + n2)

\section*{Making the Evaluator Safe (3)}
```

```
safeEval (Mul e1 e2) =
```

```
safeEval (Mul e1 e2) =
    case safeEval el of
    case safeEval el of
        Nothing -> Nothing
        Nothing -> Nothing
        Just n1 ->
        Just n1 ->
            case safeEval e2 of
            case safeEval e2 of
                Nothing -> Nothing
                Nothing -> Nothing
                Just n2 -> Just (n1 * n2)
```

```
                Just n2 -> Just (n1 * n2)
```

```

\section*{Making the Evaluator Safe (4)}
safeEval (Div e1 e2) =
case safeEval el of
Nothing -> Nothing
Just n1 ->
case safeEval e2 of
Nothing -> Nothing
Just n2 ->
if n2 == 0
then Nothing
else Just (n1 `div` n2)

\section*{Any Common Pattern?}

Clearly a lot of code duplication!
Can we factor out a common pattern?

\section*{We note:}
- Sequencing of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.

\section*{Sequencing Evaluations}
```

evalSeq :: Maybe Integer
-> (Integer -> Maybe Integer)
-> Maybe Integer
evalSeq ma f =
case ma of
Nothing -> Nothing
Just a -> f a

```

```

Aside: Scope Rules of }\lambda\mathrm{ -abstractions

```

The scope rules of \(\lambda\)-abstractions are such that parentheses can be omitted:
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
Just (n1 + n2)

\section*{Refactored Safe Evaluator (1)}
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
Just (n1 + n2)
safeEval (Sub e1 e2) =
safeEval e1 `evalSeq` \n1 ->
safeEval e2 `evalSeq` \n2 ->
Just (n1 - n2)

\section*{Refactored Safe Evaluator (2)}
safeEval (Mul e1 e2) =
safeEval e1 `evalSeq` \n1 -> safeEval e2 `evalSeq` \n2 -> Just (n1 * n2)
safeEval (Div e1 e2) = safeEval e1 `evalSeq` \n1 -> safeEval e2 `evalSeq` \n2 ->
if \(n 2=0\)
then Nothing
else Just (n1 `div` n2)
```

Maybe Viewed as a Computation (1)

```
safeEval (Add e1 e2) =
    safeEval e1 `evalSeq` \n1 ->
    safeEval e2 `evalSeq` \n2 ->
    Just (n1 + n2)
\(=\)
safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just a -> ( n 1 -> safeEval e2 ...) a

\section*{Inlining evalSeq (2)}
```

safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just n1 -> safeEval e2 `evalSeq` (\n2 -> ...)
=
safeEval (Add e1 e2) =
case (safeEval e1) of
Nothing -> Nothing
Just n1 -> case safeEval e2 of
Nothing -> Nothing
Just a -> (\n2 -> ...) a

```
Inlining evalSeq (3)
    \(=\)
    safeEval (Add e1 e2) =
        case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> case safeEval e2 of
                        Nothing -> Nothing
                        Just n2 -> (Just n1 + n2)
    Good excercise: verify the other cases.
- Consider a value of type Maybe a as denoting a computation of a value of type a that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

\section*{Maybe Viewed as a Computation (2)}

Successful computation of a value:
```

mbReturn :: a -> Maybe a

```
    mbReturn = Just

Sequencing of possibly failing computations:
mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b mbSeq ma \(\mathrm{f}=\)
case ma of
Nothing -> Nothing
Just a -> fa

\section*{Maybe Viewed as a Computation (3)}

Failing computation:
\[
\begin{aligned}
& \text { mbFail : : Maybe a } \\
& \text { mbFail = Nothing }
\end{aligned}
\]

\section*{The Safe Evaluator Revisited}
safeEval :: Exp -> Maybe Integer safeEval (Lit n) = mbReturn \(n\) safeEval (Add e1 e2) =
safeEval e1 `mbSeq` \n1 ->
safeEval e2 `mbSeq` \n2 ->
\[
\text { mbReturn ( } \mathrm{n} 1+\mathrm{n} 2 \text { ) }
\]
safeEval (Div e1 e2) = safeEval e1 `mbSeq` \n1 -> safeEval e2 `mbSeq` \n2 ->
if n2 == 0 then mbFail
else mbReturn (n1 `div` n2)))

\section*{Example 2: Numbering Trees}
```

data Tree a = Leaf a | Node (Tree a) (Tree a)

```
numberTree :: Tree a \(->\) Tree Int
numberTree \(t=f s t(n t A u x t 0)\)
    where
        ntAux :: Tree a -> Int -> (Tree Int, Int)
        ntAux (Leaf _) \(n=\) (Leaf \(n, n+1\) )
        ntAux (Node t1 t2) \(\mathrm{n}=\)
            let (t1', n') = ntAux t1 n
            in let ( \(\mathrm{t}^{\prime}, \mathrm{n}^{\prime \prime}\) ) = ntAux t2 \(\mathrm{n}^{\prime}\)
            in (Node t1' \(t 2^{\prime}, n^{\prime \prime}\) )


\section*{Observations}
- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?

\section*{Stateful Computations (1)}

\section*{Stateful Computations (4)}
- A stateful computation consumes a state and returns a result along with a possibly updated state
- The following type synonym captures this idea:
type S a = Int -> (a, Int)
(Only Int state for the sake of simplicity.)
- A value (function) of type \(s\) a can now be viewed as denoting a stateful computation computing a value of type a.

\section*{Stateful Computations (2)}
- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. state updating is an effect, implicitly affecting subsequent computations
(As we would expect.)

\section*{Stateful Computations (3)}

Computation of a value without changing the
state (For ref.: S a \(=\) Int -> (a, Int))
sReturn :: a -> S a
sReturn \(a=\) \n -> (a, n)
Sequencing of stateful computations:
```

sSeq :: S a -> (a -> S b) -> S b
sSeq sa f = \n ->
let (a, n') = sa n
in f a n'

```

Reading and incrementing the state
(For ref.: \(\mathrm{s} a=\) Int \(->\) (a, Int))
sInc :: S Int
sInc \(=\backslash n->(n, n+1)\)

\section*{Numbering trees revisited}
data Tree a = Leaf a | Node (Tree a) (Tree a)
numberTree :: Tree a -> Tree Int
numberTree \(t=f s t(n t A u x t 0)\) where
ntAux : : Tree a -> S (Tree Int)
ntAux (Leaf _) =
sInc `sSeq` \n -> sReturn (Leaf n)
ntAux (Node t1 t2) =
ntAux t1 'sSeq' \t1' ->
ntAux t2 'sSeq` \t2' -> sReturn (Node t1' t2')

\section*{Observations}
- The "plumbing" has been captured by the abstractions.
- In particular:
- counter no longer manipulated directly
- no longer any risk of "passing on" the wrong version of the counter!

\section*{Comparison of the examples}
- Both examples characterized by sequencing of effectful computations
- Both examples could be neatly structured by introducing:
- A type denoting computations
- A function constructing an effect-free computation of a value
- A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a MONAD.

\section*{Monads in Functional Programming}

A monad is represented by:
- A type constructor

M : : * -> *
M T represents computations of a value of type T .
- A polymorphic function return : : a -> M a
for lifting a value to a computation.
- A polymorphic function
\[
(\gg=):: M a \rightarrow(a \rightarrow M b) \rightarrow M b
\]
for sequencing computations.

\section*{Exercise 2: join and fmap}

Equivalently, the notion of a monad can be captured through the following functions:
return :: a -> M a
join :: (M (M a)) -> M a
\[
\text { fmap :: }(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow(\mathrm{M} a \rightarrow \mathrm{M} \text { b) }
\]
join "flattens" a computation, fmap "lifts" a function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.
(>>=) : : M a -> (a -> M b) -> M b

\section*{Exercise 2: Solution}
join :: M (M a) -> M a
join \(\mathrm{mm}=\mathrm{mm} \gg=\) id
fmap :: (a -> b) -> M a -> M b
fmap \(f m=m \gg=\backslash a->\) return ( \(f\) a)
or:
fmap :: (a -> b) -> M a -> M b
fmap f \(m=m\) >>= return.
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = join (fmap f m)

\section*{Monad laws}

Additionally, the following laws must be satisfied:
\[
\begin{aligned}
\text { return } x \gg=f & =f x \\
m \gg=\text { return } & =m \\
(m \gg=f) \gg=g & =m \gg=(\lambda x \rightarrow f x \gg=g)
\end{aligned}
\]
l.e., return is the right and left identity for \(\gg=\), and \(\gg=\) is associative.

\section*{Exercise 3: The Identity Monad}

The Identity Monad can be understood as representing effect-free computations:
type I a = a
1. Provide suitable definitions of return and >>=.
2. Verify that the monad laws hold for your definitions.
return :: a -> I
return = id
(>>=) :: I a -> (a -> I b) -> I b
\(\mathrm{m} \gg=\mathrm{f}=\mathrm{f} \mathrm{m}\)
-- or: (>>=) = flip (\$)
Simple calculations verify the laws, e.g.
\[
\begin{aligned}
\text { return } x \gg=f & =\text { id } x \gg=f \\
& =x \gg=f \\
& =f x
\end{aligned}
\]

\section*{Monads in Category Theory (1)}

The notion of a monad originated in Category Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

\section*{- Kleisli triple/triple in extension form: Most} closely related to the >>= version:

A Klesili triple over a category \(\mathcal{C}\) is a triple ( \(T, \eta, \__{-}^{*}\) ), where \(T:|\mathcal{C}| \rightarrow|\mathcal{C}|\), \(\eta_{A}: A \rightarrow T A\) for \(A \in|\mathcal{C}|, f^{*}: T A \rightarrow T B\)
for \(f: A \rightarrow T B\).
(Additionally, some laws must be satisfied.)

\section*{Monads in Category Theory (2)}
- Monad/triple in monoid form: More akin to the join/fmap version:

A monad over a category \(\mathcal{C}\) is a triple ( \(T, \eta, \mu\) ), where \(T: \mathcal{C} \rightarrow \mathcal{C}\) is a functor, \(\eta: \mathrm{id}_{\mathcal{C}} \rightarrow T\) and \(\mu: T^{2} \rightarrow T\) are natural transformations.
(Additionally, some commuting diagrams must be satisfied.)

\section*{Reading}
- Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL'92), 1992.
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on Applied Semantics 2000, Caminha, Portugal, 2000.
- All About Monads.
http://www.haskell.org/all_about_monads```

