
LiU-FP2016: Lecture 9
Monads in Haskell

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 9 – p.1/32

This Lecture

• Monads in Haskell

• The Haskell Monad Class Hierarchy

• Some Standard Monads and Library
Functions

LiU-FP2016: Lecture 9 – p.2/32

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class. In principle (but not quite from
GHC 7.8 onwards):

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.

LiU-FP2016: Lecture 9 – p.3/32

Monads in Haskell (2)

The Haskell monad class has two further
methods with default definitions:

(>>) :: m a -> m b -> m b

m >> k = m >>= _ -> k

fail :: String -> m a

fail s = error s

(However, fail will likely be moved into a
separate class MonadFail in the future.)

LiU-FP2016: Lecture 9 – p.4/32

The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x

LiU-FP2016: Lecture 9 – p.5/32

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other
notions:

• Functors

• Applicative Functors

Every monad is an applicative functor, and every
applicative functor (and thus monad) is a functor.

Class hierarchy:

class Functor f where ...

class Functor f => Applicative f where ...

class Applicative m => Monad m where ...

LiU-FP2016: Lecture 9 – p.6/32

The Monad Type Class Hierachy (2)

For example, fmap can in principle be defined in
terms of >>= and return, demonstrating that a
monad is a functor:

fmap f m = m >>= \x -> return (f x)

A consequence of this class hierarchy is that to
make some T an instance of Monad, an instance
of T for both Functor and Applicative must
also be provided.

LiU-FP2016: Lecture 9 – p.7/32

Applicative Functors (1)

An applicative functor is a functor with
application, providing operations to:

• embed pure expressions (pure), and

• sequence computations and combine their
results (<*>)

satisfying some laws.

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

LiU-FP2016: Lecture 9 – p.8/32

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result, the
structure of a computation is static.

• Applicative functors are frequently used in the
context of parsing combinators. In fact, that is
where their origin lies.

LiU-FP2016: Lecture 9 – p.9/32

Applicative Functors and Monads

A requirement is return = pure.
In fact, the Monad class provides a default
definition of return defined that way:

class Functor m => Monad m where

return :: a -> m a

return = pure

(>>=) :: m a -> (a -> m b) -> m b

LiU-FP2016: Lecture 9 – p.10/32

Exercise 1: A State Monad in Haskell

Haskell 2010 does not permit type synonyms to
be instances of classes. Hence we have to
define a new type:

newtype S a = S { unS :: (Int -> (a, Int)) }

(Thus: unS :: S a -> (Int -> (a, Int)))

Provide a Monad instance for S, ignoring for now
that instances for Functor and Applicative

are also needed.

LiU-FP2016: Lecture 9 – p.11/32

Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

LiU-FP2016: Lecture 9 – p.12/32

The Complete Set of S Instances (1)

instance Functor S where

fmap f sa = S $ \s ->

let

(a, s’) = unS sa s

in

(f a, s’)

LiU-FP2016: Lecture 9 – p.13/32

The Complete Set of S Instances (2)

instance Applicative S where

pure a = S $ \s -> (a, s)

sf <*> sa = S $ \s ->

let

(f, s’) = unS sf s

in

unS (fmap f sa) s’

LiU-FP2016: Lecture 9 – p.14/32

The Complete Set of S Instances (3)

instance Monad S where

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

(Using the default definition return = pure.)

LiU-FP2016: Lecture 9 – p.15/32

Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2

LiU-FP2016: Lecture 9 – p.16/32

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)

LiU-FP2016: Lecture 9 – p.17/32

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3

LiU-FP2016: Lecture 9 – p.18/32

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= _ ->

exp
2
>>= _ ->

return exp
3

LiU-FP2016: Lecture 9 – p.19/32

The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3

LiU-FP2016: Lecture 9 – p.20/32

Numbering Trees in do-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)

LiU-FP2016: Lecture 9 – p.21/32

The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

and then identDefs from this . . .

LiU-FP2016: Lecture 9 – p.22/32

The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds

LiU-FP2016: Lecture 9 – p.23/32

The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)

(Suffix D just to remind us the types have
changed.)

LiU-FP2016: Lecture 9 – p.24/32

The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

LiU-FP2016: Lecture 9 – p.25/32

Monadic Utility Functions (1)

Some monad utilities:
sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m =>

(a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> m a -> m b

liftM2 :: Monad m =>

(a -> b -> c) -> m a -> m b -> m c

(liftM = fmap; partly historical.)
LiU-FP2016: Lecture 9 – p.26/32

Monadic Utility Functions (2)

Example: Suppose we’re given a list xs of elements
of type T1 to process in some monad M:

• Process xs effectfully: proc :: T1 -> M T2

• Pick “good” results: good :: T2 -> Bool

• “Print” a warning if no good results:
print :: String -> M ()

do

ys <- mapM proc xs

let gys = filter good ys

when (null gys) (print "No good!")

return gys
LiU-FP2016: Lecture 9 – p.27/32

The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]

LiU-FP2016: Lecture 9 – p.28/32

The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id

LiU-FP2016: Lecture 9 – p.29/32

The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String

LiU-FP2016: Lecture 9 – p.30/32

The ST Monad: “Real” State

The ST monad (common Haskell extension)
provides real, imperative state behind the scenes
to allow efficient implementation of imperative
algorithms:

data ST s a -- abstract

instance Monad (ST s)

newSTRef :: s ST a (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

runST :: (forall s . st s a) -> a
LiU-FP2016: Lecture 9 – p.31/32

Reading

• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM

Symposium on Principles of Programming Languages

(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

LiU-FP2016: Lecture 9 – p.32/32

	This Lecture
	Monads in Haskell (1)
	Monads in Haskell (2)
	The 	exttt {Maybe} Monad in Haskell
	The Monad Type Class Hierachy (1)
	The Monad Type Class Hierachy (2)
	Applicative Functors (1)
	Applicative Functors (2)
	Applicative Functors and Monads
	Exercise 1: A State Monad in Haskell
	Exercise 1: Solution
	The Complete Set of 	exttt {S} Instances (1)
	The Complete Set of 	exttt {S} Instances (2)
	The Complete Set of 	exttt {S} Instances (3)
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering Trees in 	exttt {do}-notation
	The Compiler Fragment Revisited (1)
	The Compiler Fragment Revisited (2)
	The Compiler Fragment Revisited (3)
	The Compiler Fragment Revisited (4)
	Monadic Utility Functions (1)
	Monadic Utility Functions (2)
	The List Monad
	The Reader Monad
	The Haskell IO Monad
	The ST Monad: ``Real'' State
	Reading

