
LiU-FP2016: Lecture 9
Monads in Haskell

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 9 – p.1/32

This Lecture

• Monads in Haskell

• The Haskell Monad Class Hierarchy

• Some Standard Monads and Library
Functions
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Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class. In principle (but not quite from
GHC 7.8 onwards):

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.
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Monads in Haskell (2)

The Haskell monad class has two further
methods with default definitions:

(>>) :: m a -> m b -> m b

m >> k = m >>= \_ -> k

fail :: String -> m a

fail s = error s

(However, fail will likely be moved into a
separate class MonadFail in the future.)
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The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x
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The Monad Type Class Hierachy (1)

Monads are mathematically related to two other
notions:

• Functors

• Applicative Functors

Every monad is an applicative functor, and every
applicative functor (and thus monad) is a functor.

Class hierarchy:

class Functor f where ...

class Functor f => Applicative f where ...

class Applicative m => Monad m where ...
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The Monad Type Class Hierachy (2)

For example, fmap can in principle be defined in
terms of >>= and return, demonstrating that a
monad is a functor:

fmap f m = m >>= \x -> return (f x)

A consequence of this class hierarchy is that to
make some T an instance of Monad, an instance
of T for both Functor and Applicative must
also be provided.

LiU-FP2016: Lecture 9 – p.7/32

Applicative Functors (1)

An applicative functor is a functor with
application, providing operations to:

• embed pure expressions (pure), and

• sequence computations and combine their
results (<*>)

satisfying some laws.

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b
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Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result, the
structure of a computation is static.

• Applicative functors are frequently used in the
context of parsing combinators. In fact, that is
where their origin lies.
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Applicative Functors and Monads

A requirement is return = pure.
In fact, the Monad class provides a default
definition of return defined that way:

class Functor m => Monad m where

return :: a -> m a

return = pure

(>>=) :: m a -> (a -> m b) -> m b
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Exercise 1: A State Monad in Haskell

Haskell 2010 does not permit type synonyms to
be instances of classes. Hence we have to
define a new type:

newtype S a = S { unS :: (Int -> (a, Int)) }

(Thus: unS :: S a -> (Int -> (a, Int)))

Provide a Monad instance for S, ignoring for now
that instances for Functor and Applicative

are also needed.
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Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’
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The Complete Set of S Instances (1)

instance Functor S where

fmap f sa = S $ \s ->

let

(a, s’) = unS sa s

in

(f a, s’)
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The Complete Set of S Instances (2)

instance Applicative S where

pure a = S $ \s -> (a, s)

sf <*> sa = S $ \s ->

let

(f, s’) = unS sf s

in

unS (fmap f sa) s’
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The Complete Set of S Instances (3)

instance Monad S where

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’

(Using the default definition return = pure.)
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Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
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Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (\_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)
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The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3
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The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= \_ ->

exp
2
>>= \_ ->

return exp
3
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The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3
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Numbering Trees in do-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
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The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

and then identDefs from this . . .
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The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)

(Suffix D just to remind us the types have
changed.)
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The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!
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Monadic Utility Functions (1)

Some monad utilities:
sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m =>

(a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> m a -> m b

liftM2 :: Monad m =>

(a -> b -> c) -> m a -> m b -> m c

(liftM = fmap; partly historical.)
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Monadic Utility Functions (2)

Example: Suppose we’re given a list xs of elements
of type T1 to process in some monad M:

• Process xs effectfully: proc :: T1 -> M T2

• Pick “good” results: good :: T2 -> Bool

• “Print” a warning if no good results:
print :: String -> M ()

do

ys <- mapM proc xs

let gys = filter good ys

when (null gys) (print "No good!")

return gys
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The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]
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The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id
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The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String
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The ST Monad: “Real” State

The ST monad (common Haskell extension)
provides real, imperative state behind the scenes
to allow efficient implementation of imperative
algorithms:

data ST s a -- abstract

instance Monad (ST s)

newSTRef :: s ST a (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

runST :: (forall s . st s a) -> a
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Reading

• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM

Symposium on Principles of Programming Languages

(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.
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