LiU-FP2016: Lecture 9

Monads in Haskell

Henrik Nilsson

University of Nottingham, UK

Monads in Haskell (2)

The Haskell monad class has two further methods with default definitions:

(>>) :: m a -> m b -> m b m >> k = m >>= \setminus -> k

fail :: String -> m a
fail s = error s

(However, fail will likely be moved into a separate class MonadFail in the future.)

This Lecture

- · Monads in Haskell
- The Haskell Monad Class Hierarchy
- Some Standard Monads and Library Functions

The Maybe Monad in Haskell

instance Monad Maybe where
 -- return :: a -> Maybe a
 return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b) -- -> Maybe b Nothing >>= _ = Nothing (Just x) >>= f = f x

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by a *Type Class*. In principle (but not quite from GHC 7.8 onwards):

class Monad m where return :: a -> m a (>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be overloaded and sharing of derived definitions.

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other notions:

- Functors
- Applicative Functors

Every monad is an applicative functor, and every applicative functor (and thus monad) is a functor.

Class hierarchy:

class Functor f where \ldots

class Functor f => Applicative f where ...
class Applicative m => Monad m where ...

The Monad Type Class Hierachy (2)

For example, fmap can in principle be defined in terms of >>= and return, demonstrating that a monad is a functor:

fmap f m = m >>= $x \rightarrow$ return (f x)

O
 O
 O
 UU-FP2016: Lecture 9 – p.8/32

A consequence of this class hierarchy is that to make some T an instance of Monad, an instance of T for both Functor and Applicative must also be provided.

Applicative Functors (1)

An applicative functor is a functor with application, providing operations to:

- embed pure expressions (pure), and
- sequence computations and combine their results (<*>)

satisfying some laws.

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

Applicative Functors (2)

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result, the structure of a computation is static.
- Applicative functors are frequently used in the context of parsing combinators. In fact, that is where their origin lies.

Applicative Functors and Monads

A requirement is return = pure. In fact, the Monad class provides a default definition of return defined that way:

class Functor m => Monad m where return :: a -> m a return = pure

(>>=) :: m a -> (a -> m b) -> m b

Exercise 1: A State Monad in Haskell

Haskell 2010 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

newtype S a = S { unS :: (Int -> (a, Int)) }
(Thus:unS :: S a -> (Int -> (a, Int)))

Provide a Monad instance for S, ignoring for now that instances for Functor and Applicative are also needed.

Exercise 1: Solution

instance Monad S where return a = S ($\s ->$ (a, s))

m >>= f = S \$ \s ->
 let (a, s') = unS m s
 in unS (f a) s'

The Complete Set of S Instances (1)

```
instance Functor S where
  fmap f sa = S $ \s ->
    let
        (a, s') = unS sa s
    in
        (f a, s')
```

LU-FP016 Leature 9 - p.132

The Complete Set of S Instances (2)

instance Applicative S where pure a = S $\ s \rightarrow (a, s)$

sf <*> sa = S \$ \s ->
 let
 (f, s') = unS sf s
 in
 unS (fmap f sa) s'

The Complete Set of S Instances (3)

instance Monad S where m >>= f = S \$ \s -> let (a, s') = unS m s in unS (f a) s' (Using the default definition return = pure.)

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String -> Maybe a
fail s = Nothing
catch :: Maybe a -> Maybe a -> Maybe a
m1 `catch` m2 =
    case m1 of
        Just _ -> m1
        Nothing -> m2
```

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S () set a = S (_ -> ((), a))

get :: S Int get = S (\s -> (s, s))

Moreover, need to "run" a computation. E.g.:

runS :: S a -> a
runS m = fst (unS m 0)

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

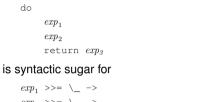
do $a <- exp_1$ $b <- exp_2$ return exp_3

is syntactic sugar for

```
exp_1 >>= \a ->
exp_2 >>= \b ->
return exp_3
```

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:



```
exp_2 >>= \setminus ->
return exp_3
```

The do-notation (3)

A let-construct is also provided:

```
do
let a = exp_1
b = exp_2
return exp_3
```

is equivalent to

Numbering Trees in do-notation

```
numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
where
    ntAux :: Tree a -> S (Tree Int)
    ntAux (Leaf _) = do
        n <- get
        set (n + 1)
        return (Leaf n)
    ntAux (Node t1 t2) = do
        t1' <- ntAux t1
        t2' <- ntAux t1
        t2' <- ntAux t2
        return (Node t1' t2')</pre>
```

The Compiler Fragment Revisited (1)

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

enterVar :: Id -> Int -> Type -> Env -> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env -> D Env

and then ${\tt identDefs}$ from this \ldots

The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
 ((i,t,e') : ds', env'', msl++ms2++ms3)
 where
 (e', ms1) = identAux l env e
 (env', ms2) =
 case enterVar i l t env of
 Left env' -> (env', [])
 Right m -> (env, [m])
 (ds', env'', ms3) =
 identDefs l env' ds

The Compiler Fragment Revisited (3)

into this:

(Suffix D just to remind us the types have changed.)

LIU-FP2016: Lecture 9 – p.24/32

The Compiler Fragment Revisited (4)

Compare with the "core" identified earlier!

```
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
  ((i,t,e') : ds', env'')
  where
        e' = identAux l env e
        env' = enterVar i l t env
        (ds', env'') = identDefs l env' ds
```

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

Monadic Utility Functions (1)

Some monad utilities:

sequence	e :: Monad m => [m a] -> m [a]
sequence	e_ :: Monad m => [m a] -> m ()
mapM	:: Monad m => (a \rightarrow m b) \rightarrow [a] \rightarrow m [b]
mapM_	:: Monad m => (a \rightarrow m b) \rightarrow [a] \rightarrow m ()
when	:: Monad m => Bool \rightarrow m () \rightarrow m ()
foldM	:: Monad m =>
	(a -> b -> m a) -> a -> [b] -> m a
liftM	:: Monad m => (a \rightarrow b) \rightarrow m a \rightarrow m b
liftM2	:: Monad m =>
	(a -> b -> c) -> m a -> m b -> m c
(liftM = fmap; partly historical.)	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Monadic Utility Functions (2)

Example: Suppose we're given a list xs of elements of type T1 to process in some monad M:

- Process xs effectfully: proc :: T1 -> M T2
- Pick "good" results: good :: T2 -> Bool
- "Print" a warning if no good results: print :: String -> M ()

do

ys <- mapM proc xs
let gys = filter good ys
when (null gys) (print "No good!")
return gys</pre>

The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where
  return a = [a]
  m >>= f = concat (map f m)
  fail s = []
```

Result:

Example:

x <- [1, 2] y <- ['a', 'b'] return (x,y)

[(1,'a'),(1,'b'), (2,'a'),(2,'b')]

The Reader Monad

Computation in an environment:

```
instance Monad ((->) e) where
  return a = const a
  m >>= f = \e -> f (m e) e
getEnv :: ((->) e) e
```

```
getEnv = id
```

The ST Monad: "Real" State

The ST monad (common Haskell extension) provides real, imperative state behind the scenes to allow efficient implementation of imperative algorithms:

data ST s a -- abstract
instance Monad (ST s)

newSTRef :: s ST a (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

runST :: (forall s . st s a) -> a

Reading

- Philip Wadler. The Essence of Functional Programming. Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL'92), 1992.
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on Applied Semantics 2000, Caminha, Portugal, 2000.

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

```
putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
getChar :: IO Char
getLine :: IO String
getContents :: String
```