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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))
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Monad Transformers (2)

However:

• Not always obvious how: e.g., should the
combination of state and error have been

newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:

• A monad transformer transforms a monad
by adding support for an additional effect.

• A library of monad transformers can be
developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.

• A form of aspect-oriented programming.

Caveat: Will consider the idea of monad transformers,
not any specific library like e.g. MTL.
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:

T :: (* -> *) -> (* -> *)

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:

lift :: M a -> T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a
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Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
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The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
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The Error Monad Transformer (2)

We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))
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The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma
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The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet
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Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2.
(Assume 1 :: Int.)

2. Given your type, use the appropriate
combination of “run functions” to run ex2.
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Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)
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The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (\_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
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Exercise 3: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼
= s -> (ET I) (a, s)

∼
= s -> I (Maybe (a, s))

∼
= s -> Maybe (a, s)

ET (ST s I) a ∼
= (ST s I) (Maybe a)

∼
= s -> I (Maybe a, s)

∼
= s -> (Maybe a, s)
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Exercise 4: Alternative ST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))
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Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.
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San Francisco, California
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Reading (2)
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