
LiU-FP2016: Lecture 10
Monad Transformers

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 10 – p.1/23

Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))

LiU-FP2016: Lecture 10 – p.2/23

Monad Transformers (2)

However:

• Not always obvious how: e.g., should the
combination of state and error have been

newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.

LiU-FP2016: Lecture 10 – p.3/23

Monad Transformers (3)

Monad Transformers can help:

• A monad transformer transforms a monad
by adding support for an additional effect.

• A library of monad transformers can be
developed, each adding a specific effect
(state, error, . . .), allowing the programmer to
mix and match.

• A form of aspect-oriented programming.

Caveat: Will consider the idea of monad transformers,
not any specific library like e.g. MTL.

LiU-FP2016: Lecture 10 – p.4/23

Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:

T :: (* -> *) -> (* -> *)

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:

lift :: M a -> T M a

LiU-FP2016: Lecture 10 – p.5/23

Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a

LiU-FP2016: Lecture 10 – p.6/23

Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s

LiU-FP2016: Lecture 10 – p.7/23

The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI

LiU-FP2016: Lecture 10 – p.8/23

The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)

LiU-FP2016: Lecture 10 – p.9/23

The Error Monad Transformer (2)

We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))

LiU-FP2016: Lecture 10 – p.10/23

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma

LiU-FP2016: Lecture 10 – p.11/23

The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet

LiU-FP2016: Lecture 10 – p.12/23

Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2.
(Assume 1 :: Int.)

2. Given your type, use the appropriate
combination of “run functions” to run ex2.

LiU-FP2016: Lecture 10 – p.13/23

Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)

LiU-FP2016: Lecture 10 – p.14/23

The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’

LiU-FP2016: Lecture 10 – p.15/23

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))

LiU-FP2016: Lecture 10 – p.16/23

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s

LiU-FP2016: Lecture 10 – p.17/23

Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)

LiU-FP2016: Lecture 10 – p.18/23

Exercise 3: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼
= s -> (ET I) (a, s)

∼
= s -> I (Maybe (a, s))

∼
= s -> Maybe (a, s)

ET (ST s I) a ∼
= (ST s I) (Maybe a)

∼
= s -> I (Maybe a, s)

∼
= s -> (Maybe a, s)

LiU-FP2016: Lecture 10 – p.19/23

Exercise 4: Alternative ST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))

LiU-FP2016: Lecture 10 – p.20/23

Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.

LiU-FP2016: Lecture 10 – p.21/23

Reading (1)

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad

Transformers and Modular Interpreters. In Proceedings

of the 22nd ACM Symposium on Principles of

Programming Languages (POPL’95), January 1995,

San Francisco, California

LiU-FP2016: Lecture 10 – p.22/23

Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad

Transformer Library. In Implementation of Functional

Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In

European Symposium on Programming (ESOP,09),

2009.

LiU-FP2016: Lecture 10 – p.23/23

	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 2: Running Transf. Monads
	Exercise 2: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 3: Effect Ordering
	Exercise 3: Solution
	Exercise 4: Alternative 	exttt {ST}?
	Problems with Monad Transformers
	Reading (1)
	Reading (2)

