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Arrows (1)

System descriptions in the form of block
diagrams are very common. Blocks have inputs
and outputs and can be combined into larger
blocks. For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: B a b -> B b c -> B a c

LiU-FP2016: Lecture 13 – p.2/28

Arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?
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Arrows (3)

John Hughes’ arrow framework:

• Abstract data type interface for function-like
types (or “blocks”, if you prefer).

• Particularly suitable for types representing
process-like computations.

• Related to monads, since arrows are
computations, but more general.

• Provides a minimal set of “wiring”
combinators.
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What is an arrow? (1)

• A type constructor a of arity two.

• Three operators:

- lifting:
arr :: (b->c) -> a b c

- composition:
(>>>) :: a b c -> a c d -> a b d

- widening:
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.
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What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f
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The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where

arr :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)
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Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of

• arr

• (>>>)

• first

for this case!

(We have not looked at what the laws are yet, but
they are “natural”.)
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Functions are arrows (2)

Solution:

• arr = id

To see this, recall

id :: t -> t

arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or

• f >>> g = g . f or even

• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)
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Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where

arr = id

(>>>) = flip (.)

first f = \(b,d) -> (f b,d)
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Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g
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The loop combinator (1)

Another important operator is loop: a fixed-point
operator used to express recursive arrows or
feedback :

loop f
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The loop combinator (2)

Not all arrow instances support loop. It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where

loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>,
first, and loop are sufficient to express any
conceivable wiring!
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Some more arrow combinators (1)

second :: Arrow a =>

a b c -> a (d,b) (d,c)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>

a b c -> a b d -> a b (c,d)
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Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
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Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

(***) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)
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Exercise 2

Describe the following circuit using arrow
combinators:

a1, a2, a3 :: A Double Double

LiU-FP2016: Lecture 13 – p.18/28



Exercise 2: One solution

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double

circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)

>>> arr (uncurry (+))
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Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double

circuit_v2 = arr (\x -> (x,x))

>>> first a1

>>> (a2 *** a3)

>>> arr (uncurry (+))
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The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar.

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
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The arrow do notation (2)

Let us redo exercise 2 using this notation:

circuit_v4 :: A Double Double

circuit_v4 = proc x -> do

y1 <- a1 -< x

y2 <- a2 -< y1

y3 <- a3 -< x

returnA -< y2 + y3
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The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double

circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x

y3 <- a3 -< x

returnA -< y2 + y3
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The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double

a3 :: A (Double,Double) Double

Exercise 3: Describe this using only the arrow
combinators.
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The arrow do notation (5)

circuit = proc x -> do

rec

y1 <- a1 -< x

y2 <- a2 -< y1

y3 <- a3 -< (x, y)

let y = y2 + y3

returnA -< y
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Arrows and Monads (1)

Arrows generalize monads: for every monad type
there is an arrow, the Kleisli category for the
monad:

newtype Kleisli m a b = K (a -> m b)

instance Monad m => Arrow (Kleisli m) where

arr f = K (\b -> return (f b))

K f >>> K g = K (\b -> f b >>= g)
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Arrows and Monads (2)

But not every arrow is a monad. However, arrows
that support an additional apply operation are
effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 4: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply; i.e.,

define return and bind in terms of the arrow

operations (and verify that the monad laws hold).
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Reading

• John Hughes. Generalising monads to arrows. Science

of Computer Programming, 37:67–111, May 2000

• John Hughes. Programming with arrows. In Advanced

Functional Programming, 2004. To be published by

Springer Verlag.
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