Arrows (3)

LiU-FP2016: Lecture 13
Arrows
Henrik Nilsson
University of Nottingham, UK

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to monads, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
- lifting:
arr :: (b->c) -> a b c
- composition:
(>>>) :: a b c -> a c d -> a b d
- widening:
first :: a b c -> a $(b, d)(c, d)$
- A set of algebraic laws that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

first f

In Haskell, a type class is used to capture these ideas (except for the laws):
class Arrow a where

Functions are arrows (1)

Functions are a simple example of arrows, with
(->) as the arrow type constructor.
Exercise 1: Suggest suitable definitions of

- arr
- (>>>)
- first
for this case!
(We have not looked at what the laws are yet, but they are "natural".)

Functions are arrows (2)

Solution:

- arr = id

To see this, recall
id :: t -> t

$$
\operatorname{arr}::(b->c)->a b c
$$

Instantiate with

$$
\begin{aligned}
& \mathrm{a}=(->) \\
& \mathrm{t}=\mathrm{b}->\mathrm{c}=(->) \mathrm{b} \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \text { arr :: (b -> c) -> a b c } \\
& \text { (>>>) : : a b c -> a c d }->\text { a b d } \\
& \text { first : : a b c -> a (b,d) (c,d) }
\end{aligned}
$$

How many and what combinators do we need to be able to describe arbitrary systems?

Functions are arrows (3)

The loop combinator (1)

```
- f >>> g = \a -> g (f a) or
f >>> g = g . f or even
- (>>>) = flip (.)
- first f = \(b,d) -> (f b,d)
```


Functions are arrows (4)

Arrow instance declaration for functions:
instance Arrow (->) where

$$
\begin{array}{ll}
\operatorname{arr} & =\text { id } \\
(\ggg) & =\text { flip (.) } \\
\text { first } f & =\backslash(b, d) \rightarrow(f b, d)
\end{array}
$$

Some arrow laws

```
(f >>> g) >>> h = f >>> (g >>> h)
    arr (f >>> g) = arr f >>> arr g
    arr id >>> f = f
    f = f >>> arr id
    first (arr f) = arr (first f)
first (f >>> g) = first f >>> first g
```

Another important operator is loop: a fixed-point operator used to express recursive arrows or

feedback:

loop f

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:
class Arrow a => ArrowLoop a where

$$
\text { loop :: a }(b, d)(c, d) \rightarrow a b c
$$

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

second : : Arrow a =>

$$
\text { a b c -> a }(d, b) \quad(d, c)
$$

(***) : : Arrow a =>

$$
a \quad \mathrm{~b} c \rightarrow a d e->a(b, d) \quad(c, e)
$$

(\&\&\&) : : Arrow a =>
a b c -> a b d -> a b (c, d)

As diagrams:

Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap $\operatorname{swap}(\mathrm{x}, \mathrm{y})=(\mathrm{y}, \mathrm{x})$
(***) :: Arrow a =>
a b c -> a de -> a $(b, d) \quad(c, e)$
f *** $g=$ first f >>> second g
(\&\&\&) :: Arrow a => a b c \rightarrow a b d -> a b (c,d)
$\mathrm{f} \& \& \& \mathrm{~g}=\operatorname{arr}(\backslash \mathrm{x}->(\mathrm{x}, \mathrm{x}))$ >>> (f *** g)

Exercise 2

Describe the following circuit using arrow combinators

a1, a2, a3 :: A Double Double

Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:

a1, a2, a3 :: A Double Double
circuit_v1 :: A Double Double circuit_v1 = (a1 \&\&\& arr id)

$$
\ggg(\mathrm{a} 2 \text { t** a3) }
$$

>>> arr (uncurry (+))

Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double
circuit_v2 :: A Double Double
circuit_v2 $=\operatorname{arr}(\backslash x->(x, x))$
>>> first al
>>> (a2 *** a3)
>>> arr (uncurry (+))

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

$$
\begin{aligned}
& \text { proc } \text { pat }->\text { do }[\text { rec }] \\
& \text { pat }_{1}<-\operatorname{sfexp}_{1}-<\exp _{1} \\
& \text { pat }_{2}<-\operatorname{sfexp}_{2}-<\exp _{2} \\
& \ldots \\
& \text { pat }_{n}<- \text { sfexp } \\
& n \\
& \text { returnA }-<\exp _{n}
\end{aligned}
$$

Also: let pat $=\exp \equiv$ pat $<-\operatorname{arr} \mathrm{id}-<\exp$

Let us redo exercise 2 using this notation:

$$
\begin{gathered}
\text { circuit_v4 : : A Double Double } \\
\text { circuit_v4 }=\text { proc } x->\text { do } \\
\text { y1 }<- \text { a1 -<x } \\
\text { y2 <- a2 -< y1 } \\
\text { y3 <- a3 -<x } \\
\text { returnA }-<y^{2}+y 3
\end{gathered}
$$

The arrow do notation (3)

We can also mix and match:

$$
\begin{gathered}
\text { circuit_v5 : : A Double Double } \\
\text { circuit_v5 = proc } x->\text { do } \\
\text { y2 <- a2 } \lll \text { a1 }-<x \\
\text { y3 }<- \text { a3 } \quad-<x \\
\text { returnA }-<y 2+y 3
\end{gathered}
$$

The arrow do notation (4)

Recursive networks: do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double
Exercise 3: Describe this using only the arrow combinators.

The arrow do notation (5)

circuit $=$ proc $x->$ do
rec
y1 <- a1 -< x
$y^{2}<-a 2-<y 1$
y3 <- a3 -< (x, y)
let $y=y 2+y^{3}$
returnA $-<y$

Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the Kleisli category for the monad:

instance Monad m Arrow (Kleisli m) where arr $\mathrm{f} \quad=\mathrm{K}$ ($\backslash \mathrm{b}$-> return (f b)) K f >>> K g $=$ K ($\backslash \mathrm{b}$-> f b >>= g)

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation are effectively monads:

```
apply :: Arrow a => a (a b c, b) c
```

Exercise 4: Verify that

$$
\text { newtype } \mathrm{M} \text { b }=\mathrm{M} \text { (A () b) }
$$

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67-111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. To be published by Springer Verlag.

