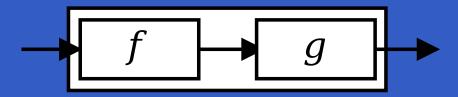
LiU-FP2016: Lecture 13 Arrows

Henrik Nilsson

University of Nottingham, UK

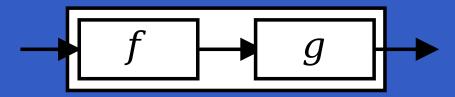
Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



Arrows (1)

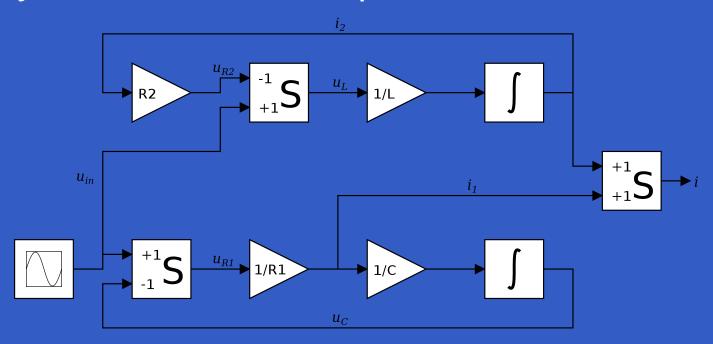
System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:



A *combinator* can be defined that captures this idea:

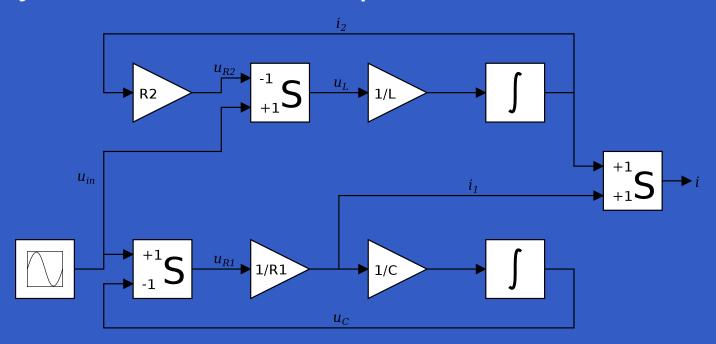
Arrows (2)

But systems can be complex:



Arrows (2)

But systems can be complex:



How many and what combinators do we need to be able to describe arbitrary systems?

John Hughes' arrow framework:

Abstract data type interface for function-like types (or "blocks", if you prefer).

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

A type constructor a of arity two.

- A type constructor a of arity two.
- Three operators:

- A *type constructor* a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- A *type constructor* a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- composition:

```
(>>>) :: a b c -> a c d -> a b d
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- composition:

```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c -> a (b,d) (c,d)
```

- A type constructor a of arity two.
- Three operators:
 - lifting:

```
arr :: (b->c) -> a b c
```

- composition:

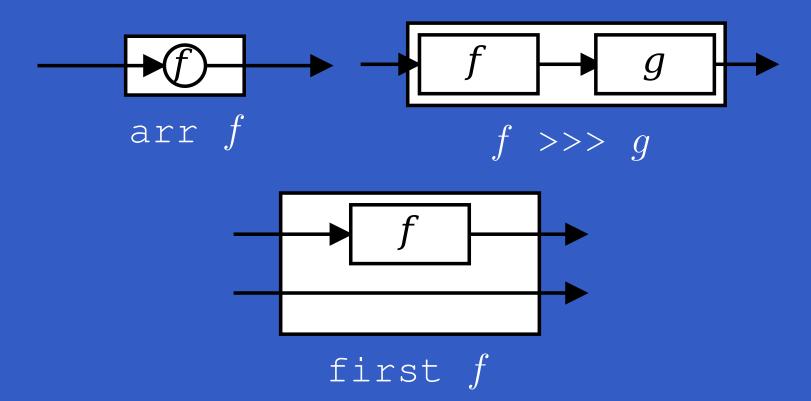
```
(>>>) :: a b c -> a c d -> a b d
```

widening:

```
first :: a b c -> a (b,d) (c,d)
```

A set of *algebraic laws* that must hold.

These diagrams convey the general idea:



The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

```
class Arrow a where
    arr :: (b -> c) -> a b c
    (>>>) :: a b c -> a c d -> a b d
    first :: a b c -> a (b,d) (c,d)
```

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 1: Suggest suitable definitions of

- arr
- (>>>)
- first

for this case!

(We have not looked at what the laws are yet, but they are "natural".)

Solution:

arr = id

Solution:

```
To see this, recall
```

```
id :: t -> t
arr :: (b->c) -> a b c
```

Solution:

arr = id
To see this, recall

```
id :: t -> t
arr :: (b->c) -> a b c
```

Instantiate with

$$a = (->)$$

 $t = b->c = (->) b c$

•
$$f >>> g = \a -> g (f a)$$

 $f >>> g = \a -> g (f a)$ or f >>> g = g . f

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \((b,d) -> (f b,d))
```

$$(f >>> g) >>> h = f >>> (g >>> h)$$

$$(f >>> g) >>> h = f >>> (g >>> h)$$

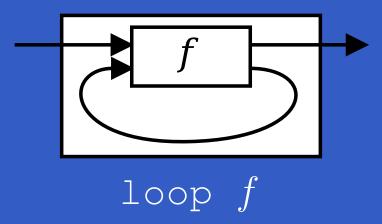
 $arr (f >>> g) = arr f >>> arr g$

$$(f >>> g) >>> h = f >>> (g >>> h)$$
 $arr (f >>> g) = arr f >>> arr g$
 $arr id >>> f = f$

```
(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
f = f >>> arr id
```

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:



The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

```
class Arrow a => ArrowLoop a where
  loop :: a (b, d) (c, d) -> a b c
```

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

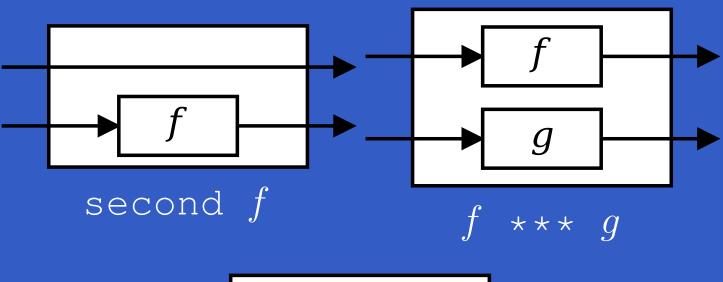
```
second :: Arrow a =>
    a b c -> a (d,b) (d,c)

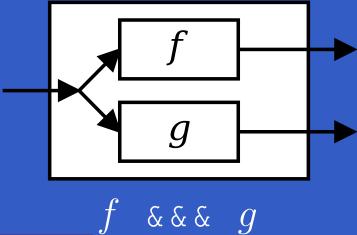
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
    a b c -> a b d -> a b (c,d)
```

Some more arrow combinators (2)

As diagrams:





```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

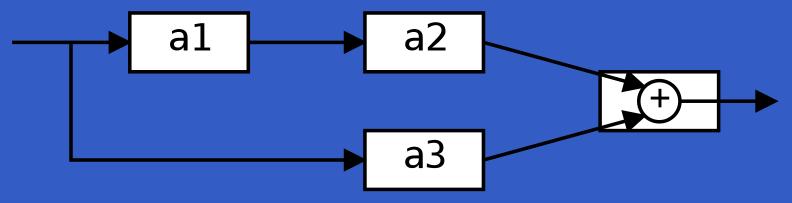
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g
```

```
second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x, y) = (y, x)
(***) :: Arrow a =>
    a b c -> a d e -> a (b,d) (c,e)
f *** q = first f >>> second q
\overline{(\&\&\&)} :: Arrow a => a b c -> a b d -> a b (c,d)
f \&\&\& g = arr (\x->(x,x)) >>> (f *** g)
```

Exercise 2

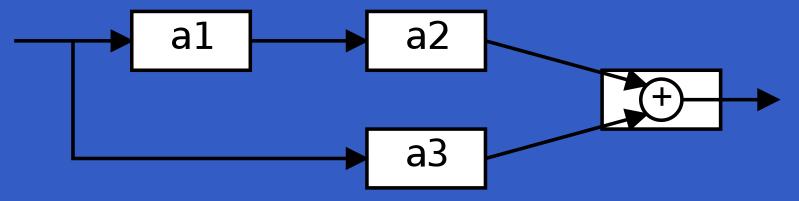
Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:



a1, a2, a3 :: A Double Double

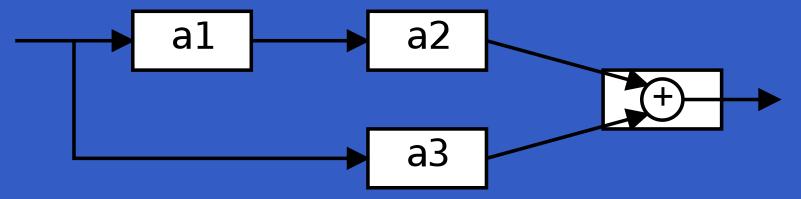
Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:

```
a1, a2, a3 :: A Double Double
circuit_v1 :: A Double Double
circuit_v1 = (a1 \&\&\& arr id)
             >>> (a2 *** a3)
             >>> arr (uncurry (+))
```

Exercise 2: Another solution

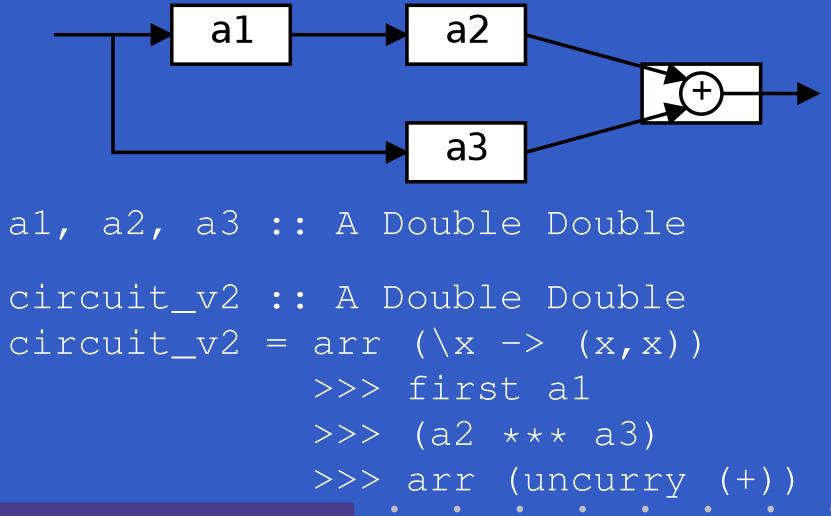
Exercise 2: Describe the following circuit:



a1, a2, a3 :: A Double Double

Exercise 2: Another solution

Exercise 2: Describe the following circuit:



The arrow do notation (1)

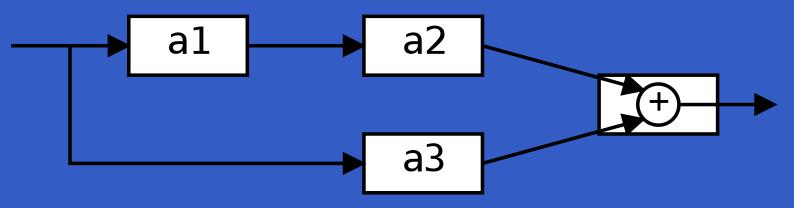
Ross Paterson's do-notation for arrows supports *pointed* arrow programming. Only *syntactic sugar*.

$$\begin{array}{c} \operatorname{proc} \operatorname{pat} -> \operatorname{do} [\operatorname{rec}] \\ \operatorname{pat}_1 <- \operatorname{sfexp}_1 -< \operatorname{exp}_1 \\ \operatorname{pat}_2 <- \operatorname{sfexp}_2 -< \operatorname{exp}_2 \\ \\ \cdots \\ \operatorname{pat}_n <- \operatorname{sfexp}_n -< \operatorname{exp}_n \\ \operatorname{returnA} -< \operatorname{exp} \end{array}$$

Also: let $pat = exp \equiv pat < - arrid - < exp$

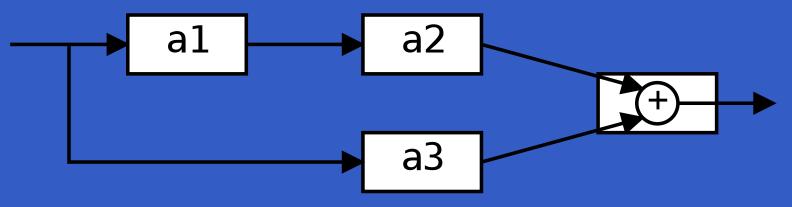
The arrow do notation (2)

Let us redo exercise 2 using this notation:



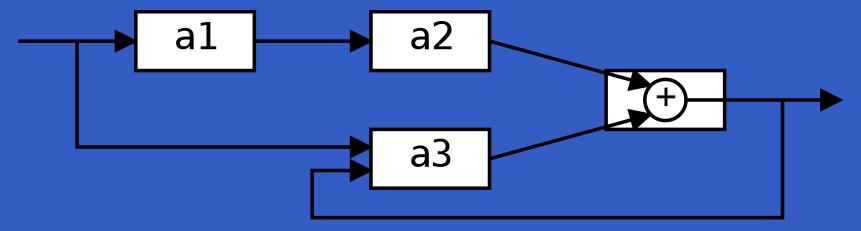
The arrow do notation (3)

We can also mix and match:



The arrow do notation (4)

Recursive networks: do-notation:

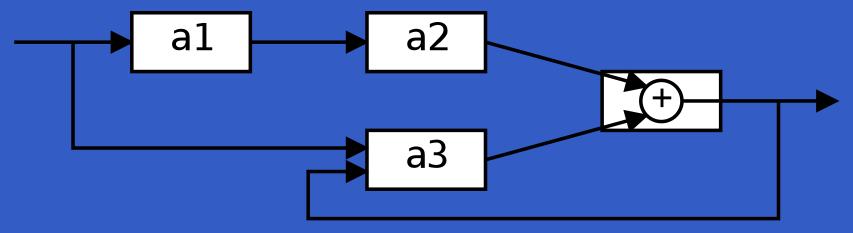


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

The arrow do notation (4)

Recursive networks: do-notation:

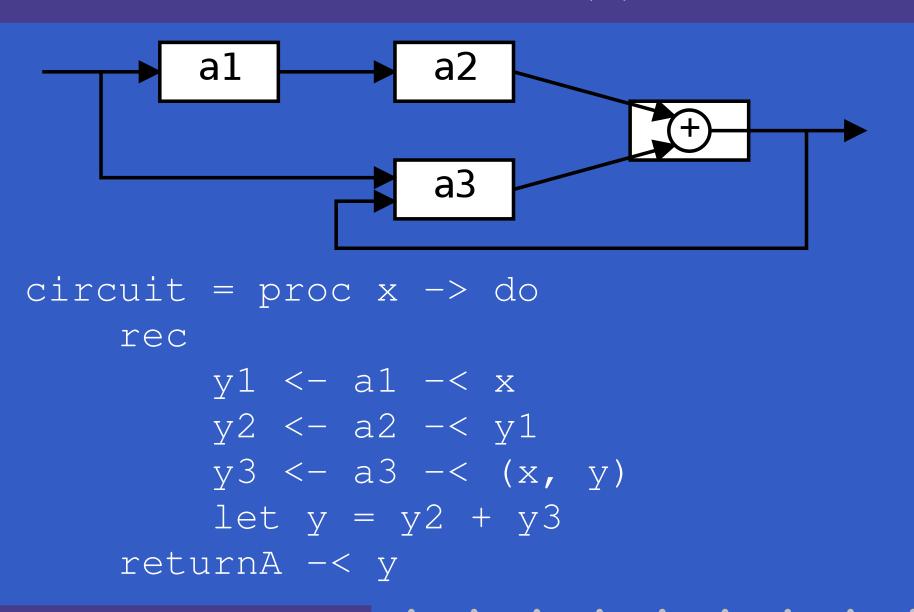


a1, a2 :: A Double Double

a3 :: A (Double, Double) Double

Exercise 3: Describe this using only the arrow combinators.

The arrow do notation (5)



Arrows and Monads (1)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
arr f = K (\b -> return (f b))
K f >>> K g = K (\b -> f b >>= g)
```

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation *are* effectively monads:

```
apply :: Arrow a \Rightarrow a (a b c, b) c
```

Exercise 4: Verify that

```
newtype M b = M (A () b)
```

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

Reading

- John Hughes. Generalising monads to arrows. *Science of Computer Programming*, 37:67–111, May 2000
- John Hughes. Programming with arrows. In *Advanced Functional Programming*, 2004. To be published by Springer Verlag.