LiU-FP2016: Lecture 15 The Polymorphic Lambda Calculus (System F)

Henrik Nilsson

University of Nottingham, UK

LiU-FP2016: Lecture 15 – p.1/17

This Lecture

- The simply typed lambda calculus.
- Limitations of the simply typed λ -calculus.
- The polymorphic lambda calculus (System F)
- Examples illustrating the power of system F

The Simply Typed λ -Calculus (1)

- $\begin{array}{cccc} T & \to & types: \\ & & B & fixed set of base types \\ & & T \rightarrow T & type of functions \end{array}$
- $\begin{array}{cccc} \Gamma & \rightarrow & contexts: \\ & \mid & \emptyset & empty \ context \\ & \mid & \Gamma, x: T & context \ extension \end{array}$

Note: Need at least *one* base type, or there is no way to construct a type of finite size.

The Simply Typed λ -Calculus (2)

 $\begin{array}{cccc} t & \rightarrow & terms: \\ & x & variable \\ & c & constant (optional) \\ & \lambda x:T.t & abstraction \\ & t t & application \end{array}$

 $v \rightarrow values:$ | c constant (optional) $| \lambda x : T \cdot t abstraction$

The Simply Typed λ -Calculus (3)

$$\frac{x:T \in \Gamma}{\Gamma \vdash x:T}$$
(T-VAR)

$$\frac{c \text{ is a constant of type } T}{\Gamma \vdash c:T}$$
(T-CONST-c)

$$\frac{\Gamma, x:T_1 \vdash t_2:T_2}{\Gamma \vdash \lambda x:T_1 \cdot t_2:T_1 \rightarrow T_2}$$
(T-ABS)

$$\frac{\Gamma \vdash t_1:T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2:T_{11}}{\Gamma \vdash t_1 t_2:T_{12}}$$
(T-APP)

LiU-FP2016: Lecture 15 – p.5/17

Consider defining a function twice:

twice(f, x) = f(f(x))

Consider defining a function twice:

twice(f, x) = f(f(x))

Easy in the untyped λ -calculus:

TWICE $\equiv \lambda \mathbf{f} \cdot \lambda \mathbf{x} \cdot \mathbf{f} (\mathbf{f} \mathbf{x})$

Consider defining a function twice: twice(f, x) = f(f(x))Easy in the untyped λ -calculus: **TWICE** $\equiv \lambda f. \lambda x. f(f x)$ What about the simply typed λ -calculus? **TWICE** $\equiv \lambda f:???.\lambda x:???.f(f x)$

Consider defining a function twice: twice(f, x) = f(f(x))Easy in the untyped λ -calculus: **TWICE** $\equiv \lambda f. \lambda x. f(f x)$ What about the simply typed λ -calculus? **TWICE** $\equiv \lambda f:???.\lambda x:???.f(f x)$ What should the types of the arguments be?

Consider defining a function twice: twice(f, x) = f(f(x))Easy in the untyped λ -calculus: **TWICE** $\equiv \lambda \mathbf{f} \cdot \lambda \mathbf{x} \cdot \mathbf{f} (\mathbf{f} \mathbf{x})$ What about the simply typed λ -calculus? **TWICE** $\equiv \lambda f:???.\lambda x:???.f(f x)$ What should the types of the arguments be? Can **TWICE** be used for, say, both **Bool** and **Nat**?

Suppose Bool, Nat $\in B$.

Suppose Bool, Nat $\in B$.

What matters is that the types would be different even if we were to encode them in the base calculus.

Suppose Bool, $Nat \in B$.

What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a *separate* definition for *each* type at which we want to use **TWICE**:

Suppose Bool, $Nat \in B$.

What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a *separate* definition for *each* type at which we want to use **TWICE**:

TWICEBOOL $\equiv \lambda f:Bool \rightarrow Bool. \lambda x:Bool.f(f x)$

Suppose **Bool**, Nat $\in B$.

What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a **separate** definition for **each** type at which we want to use **TWICE**:

TWICEBOOL $\equiv \lambda f:Bool \rightarrow Bool.\lambda x:Bool.f(f x)$ **TWICENAT** $\equiv \lambda f:Nat \rightarrow Nat.\lambda x:Nat.f(f x)$

Suppose Bool, $Nat \in B$.

What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a **separate** definition for **each** type at which we want to use **TWICE**:

TWICEBOOL $\equiv \lambda f:Bool \rightarrow Bool.\lambda x:Bool.f(f x)$

TWICENAT $\equiv \lambda f: Nat \rightarrow Nat. \lambda x: Nat. f(f x)$

We have been forced to define *essentially the same* function over and over.

We have been forced to define *essentially the same* function over and over.

Common CS sensibility suggests *abstraction* over the *varying* part; i.e., here *the type*!

We have been forced to define *essentially the same* function over and over.

Common CS sensibility suggests *abstraction* over the *varying* part; i.e., here *the type*!

Thus, we would like to do something like:

TWICEPOLY \equiv $\Lambda \mathbf{T} . \lambda \mathbf{f} : \mathbf{T} \rightarrow \mathbf{T} . \lambda \mathbf{x} : \mathbf{T} . \mathbf{f} (\mathbf{f} \mathbf{x})$

We have been forced to define *essentially the same* function over and over.

Common CS sensibility suggests *abstraction* over the *varying* part; i.e., here *the type*!

Thus, we would like to do something like:

TWICEPOLY $\equiv \Lambda \mathbf{T} . \lambda \mathbf{f} : \mathbf{T} \rightarrow \mathbf{T} . \lambda \mathbf{x} : \mathbf{T} . \mathbf{f} (\mathbf{f} \mathbf{x})$ Now:

System F: Abstract Syntax (1)

 $\begin{array}{cccc} \Gamma & \rightarrow & & \textit{contexts:} \\ & \mid & \emptyset \mid & \Gamma, x : T & \textit{[as for simply typed]} \\ & \mid & \Gamma, X & \textit{extension with type variable} \end{array}$

System F: Abstract Syntax (2)

$$\begin{array}{cccc} v & \rightarrow & \\ & \mid & c & \mid & \lambda x : T \cdot t \\ & \mid & \Lambda X \cdot t \end{array}$$

values: [as for simply typed] type abstraction value

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted): Additional typing rules:

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):

Additional typing rules:

$$\frac{\Gamma, X \vdash t : T}{\Gamma \vdash \Lambda X \cdot t : \forall X \cdot T}$$

LiU-FP2016: Lecture 15 – p.11/17

(T-TABS)

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):

Additional typing rules:

$$\frac{\Gamma, X \vdash t : T}{\Gamma \vdash \Lambda X \cdot t : \forall X \cdot T} \quad \text{(T-TABS)}$$

$$\frac{\Gamma \vdash t_1 : \forall X \cdot T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2] T_{12}} \quad \text{(T-TAPP)}$$

LiU-FP2016: Lecture 15 – p.11/17

System F: Evaluation Rules

E-APP1, E-APP2, E-APPABS are as before:

$$\frac{t_1 \longrightarrow t'_1}{t_1 t_2 \longrightarrow t'_1 t_2}$$
(E-APP1)
$$\frac{t_2 \longrightarrow t'_2}{v_1 t_2 \longrightarrow v_1 t'_2}$$
(E-APP2)

 $\begin{array}{c} (\lambda x : T_{11} \cdot t_{12}) \ v_2 \longrightarrow [x \mapsto v_2] t_{12} & (\text{E-APPABS}) \\ \\ \frac{t_1 \longrightarrow t'_1}{t_1 \ [T_2] \longrightarrow t'_1 \ [T_2]} & (\text{E-TAPP}) \end{array} \end{array}$

 $(\Lambda X \cdot t_{12}) [T_2] \longrightarrow [X \mapsto T_2] t_{12}$ (E-TAPPABS)

Exercise

Given

$\mathbf{ID} \equiv \Lambda \mathbf{T} \cdot \lambda \mathbf{x} : \mathbf{T} \cdot \mathbf{x}$ $\Gamma_1 = \emptyset, \mathbf{Nat}, \mathbf{5} : \mathbf{Nat}$ type check ID [Nat] 5 in context Γ_1 . (On whiteboard)

System F: Church Booleans (1)

Recall untyped encoding:

TRUE $\equiv \lambda t.\lambda f.t$ **FALSE** $\equiv \lambda t.\lambda f.f$

We need to:

assign a *common* type to these two terms;
need to work for *arbitrary* argument types.
Any ideas?

FP2016: Lecture 15 – p.14/17

CBOOL \equiv ???

System F: Church Booleans (1)

Recall untyped encoding:

TRUE $\equiv \lambda t.\lambda f.t$ **FALSE** $\equiv \lambda t.\lambda f.f$

We need to:

assign a *common* type to these two terms;
need to work for *arbitrary* argument types.
Parametrise on the type:

CBOOL $\equiv \forall x.x \rightarrow x \rightarrow x$

System F: Church Booleans (2)

- **CBOOL** $\equiv \forall x.x \rightarrow x \rightarrow x$
 - TRUE : CBOOL
 - **TRUE** $\equiv \Lambda \mathbf{X} . \lambda \mathbf{t} : \mathbf{X} . \lambda \mathbf{f} : \mathbf{X} . \mathbf{t}$
- FALSE : CBOOL
- **FALSE** $\equiv \Lambda \mathbf{X} . \lambda \mathbf{t} : \mathbf{X} . \lambda \mathbf{f} : \mathbf{X} . \mathbf{f}$
 - **NOT** : **CBOOL** \rightarrow **CBOOL NOT** $\equiv \lambda$ **b**:**CBOOL** $.\Lambda$ **X** $.\lambda$ **t**:**X** $.\lambda$ **f**:**X**.b**[X] f t**

Normalization

System F is strongly normalizing, like the simply typed λ -calculus.

Homework

- Given 1 : Nat and 2 : Nat, write down a type-correct application of TRUE to 1 and 2 such that the result is 1.
- Evaluate the above term using the evaluation rules.
- Prove TRUE : CBOOL.
- Prove **NOT** : **CBOOL** \rightarrow **CBOOL**
- Provide a suitable definition of logical conjunction, AND.