LiU-FP2016: Lecture 15 The Polymorphic Lambda Calculus (System F)

Henrik Nilsson

University of Nottingham, UK

This Lecture

- The simply typed lambda calculus.
- Limitations of the simply typed λ-calculus.
- The polymorphic lambda calculus (System F)
- Examples illustrating the power of system F

The Simply Typed λ-Calculus (1)

$T \rightarrow$		types:
	B	fixed set of base types
	$T \rightarrow T$	type of functions
$\Gamma \rightarrow$		contexts:
	\emptyset	empty context
	$\Gamma, x: T$	context extension

Note: Need at least one base type, or there is no way to construct a type of finite size.

The Simply Typed λ-Calculus (2)

t	\rightarrow	terms:	
	x	variable	
	c	constant (optional)	
	$\lambda x: T . t$	abstraction	
	$t t$	application	
v	\rightarrow		
	c	values:	
			constant (optional)
		abstraction	

The Simply Typed λ-Calculus (3)

$$
\begin{gathered}
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \\
\frac{c \text { is a constant of type } T}{\Gamma \vdash c: T} \\
\frac{\Gamma, x: T_{1} \vdash t_{2}: T_{2}}{\Gamma \vdash \lambda x: T_{1} \cdot t_{2}: T_{1} \rightarrow T_{2}} \\
\frac{\Gamma \vdash t_{1}: T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_{2}: T_{11}}{\Gamma \vdash t_{1} t_{2}: T_{12}}
\end{gathered}
$$

(T-VAR)
(T-CONST-c)
(T-ABS)
(T-APP)

Example: TWICE (1)

Consider defining a function twice:

$$
\operatorname{twice}(f, x)=f(f(x))
$$

Example: TWICE (1)

Consider defining a function twice:

$$
\operatorname{twice}(f, x)=f(f(x))
$$

Easy in the untyped λ-calculus:

$$
\text { TWICE } \equiv \lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{f} x)
$$

Example: TWICE (1)

Consider defining a function twice:

$$
\operatorname{twice}(f, x)=f(f(x))
$$

Easy in the untyped λ-calculus:

$$
\text { TWICE } \equiv \lambda \mathrm{f} \cdot \lambda \mathrm{x} \cdot \mathrm{f}(\mathrm{fx})
$$

What about the simply typed λ-calculus?

$$
\text { TWICE } \equiv \lambda \mathrm{f}: ? ? ? . \lambda \mathrm{x}: \text { ???.f(fx) }
$$

Example: TWICE (1)

Consider defining a function twice:

$$
\operatorname{twice}(f, x)=f(f(x))
$$

Easy in the untyped λ-calculus:

$$
\text { TWICE } \equiv \lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{fx})
$$

What about the simply typed λ-calculus?

$$
\text { TWICE } \equiv \lambda \mathrm{f}: ? ? ? . \lambda \mathrm{x}: ? ? ? . \mathrm{f}(\mathrm{f} \mathbf{x})
$$

What should the types of the arguments be?

Example: TWICE (1)

Consider defining a function twice:

$$
\operatorname{twice}(f, x)=f(f(x))
$$

Easy in the untyped λ-calculus:

$$
\text { TWICE } \equiv \lambda \mathrm{f}, \lambda \mathrm{x} . \mathrm{f}(\mathrm{fx})
$$

What about the simply typed λ-calculus?

$$
\text { TWICE } \equiv \lambda \mathrm{f}: ? ? ? . \lambda \mathrm{x}: ? ? ? . \mathrm{f}(\mathrm{f} \mathrm{x})
$$

What should the types of the arguments be?
Can TWICE be used for, say, both Bool and Nat?

Example: TWICE (2)

Suppose Bool, Nat $\in B$.

Example: TWICE (2)

Suppose Bool, Nat $\in B$.
What matters is that the types would be different even if we were to encode them in the base calculus.

Example: TWICE (2)

Suppose Bool, Nat $\in B$.
What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a separate definition for each type at which we want to use TWICE:

Example: TWICE (2)

Suppose Bool, Nat $\in B$.
What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a separate definition for each type at which we want to use TWICE:

$$
\text { TWICEBOOL } \equiv \lambda f: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool.f }(\mathrm{f} \times \mathrm{x})
$$

Example: TWICE (2)

Suppose Bool, Nat $\in B$.
What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a separate definition for each type at which we want to use TWICE:

$$
\begin{aligned}
\text { TWICFBOOL } & \equiv \lambda \mathrm{f}: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool.f }(\mathrm{fx}) \\
\text { TWICENAT } & \equiv \lambda \mathrm{f}: \text { Nat } \rightarrow \text { Nat. } \lambda \mathrm{x}: \text { Nat.f }(\mathrm{fx})
\end{aligned}
$$

Example: TWICE (2)

Suppose Bool, Nat $\in B$.
What matters is that the types would be different even if we were to encode them in the base calculus.

Thus we need a separate definition for each type at which we want to use TWICE:

$$
\begin{aligned}
& \text { TWICEBOOL } \equiv \lambda \mathrm{f}: \text { Bool } \rightarrow \text { Bool. } \lambda \mathrm{x}: \text { Bool. } \mathrm{f}(\mathrm{f} \mathbf{x}) \\
& \text { TWICENAT } \equiv \\
& \mathrm{f}: \text { Nat } \rightarrow \text { Nat. } \lambda \mathrm{x}: \text { Nat. } \mathrm{f}(\mathrm{fx}) \\
& \text { TWICENATEUN } \equiv \lambda \mathrm{f}:(\text { Nat } \rightarrow \text { Nat }) \rightarrow(\text { Nat } \rightarrow \text { Nat }) .
\end{aligned}
$$

Example: TWICE (3)

We have been forced to define essentially the same function over and over.

Example: TWICE (3)

We have been forced to define essentially the same function over and over.

Common CS sensibility suggests abstraction over the varying part; i.e., here the type!

Example: TWICE (3)

We have been forced to define essentially the same function over and over.

Common CS sensibility suggests abstraction over the varying part; i.e., here the type!
Thus, we would like to do something like:

$$
\text { TWICEPOLY } \equiv \Lambda T . \lambda f: T \rightarrow T . \lambda \mathbf{x}: T . f(f x)
$$

Example: TWICE (3)

We have been forced to define essentially the same function over and over.

Common CS sensibility suggests abstraction over the varying part; i.e., here the type!
Thus, we would like to do something like:

$$
T W I C E P O L Y \equiv \Lambda T \cdot \lambda f: T \rightarrow T \cdot \lambda \mathbf{x}: T \cdot \mathbf{f}(£ \mathbf{x})
$$

Now:

$$
\begin{aligned}
\text { TWICEBOOL } & \equiv \text { TWICEPOLY [Bool] } \\
\text { TWICENAT } & \equiv \text { TWICBPOLY [Nat] } \\
\text { TWICENATEUN } & \equiv \text { TWICPPOLY [Nat } \rightarrow \text { Nat] }
\end{aligned}
$$

System F: Abstract Syntax (1)

$$
\begin{array}{ll}
T \rightarrow & \\
\left|\begin{array}{l}
\mid \\
\mid \\
\mid \\
\mid \\
\mid \\
\mid
\end{array} \forall X\right| T \rightarrow T \\
\end{array}
$$

[as for simply typed] type variable
universally quantified type
$\Gamma \rightarrow$
contexts:
$\begin{array}{lrr}\mid & \emptyset \mid \Gamma, x: T r & \text { [as for simply typed] } \\ \Gamma, X & \text { extension with type variable }\end{array}$

System F: Abstract Syntax (2)

$t \rightarrow$
terms:
[as for simply typed]
type abstraction
type application
$v \rightarrow$
values:
[as for simply typed] type abstraction value

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):
Additional typing rules:

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):
Additional typing rules:

$$
\frac{\Gamma, X \vdash t: T}{\Gamma \vdash \Lambda X \cdot t: \forall X \cdot T} \quad \text { (T-TABS) }
$$

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as before (omitted):
Additional typing rules:

$$
\begin{gathered}
\frac{\Gamma, X \vdash t: T}{\Gamma \vdash \Lambda X \cdot t: \forall X \cdot T} \\
\frac{\Gamma \vdash t_{1}: \forall X \cdot T_{12}}{\Gamma \vdash t_{1}\left[T_{2}\right]:\left[X \mapsto T_{2}\right] T_{12}} \quad \text { (T-TABS) } \\
\text { (T-TAPP) }
\end{gathered}
$$

System F: Evaluation Rules

E-APP1, E-APP2, E-APPABS are as before:

$$
\begin{array}{rlr}
\frac{t_{1}}{t_{1} t_{2}} \longrightarrow t_{1}^{\prime} & \text { (E-APP1) } \\
\frac{t_{2}}{v_{1} t_{2}} \longrightarrow t_{2} & \text { (E-APP2) } \\
\left(\lambda x: v_{11}^{\prime} t_{2}^{\prime}\right. & \left.t_{12}\right) v_{2} \longrightarrow\left[x \mapsto v_{2}\right] t_{12} & \text { (E-APPABS) } \\
\frac{t_{1}}{} \longrightarrow t_{1}^{\prime} \\
t_{1}\left[T_{2}\right] \longrightarrow t_{1}^{\prime}\left[T_{2}\right] & \text { (E-TAPP) } \\
\left(\Lambda X . t_{12}\right)\left[T_{2}\right] \longrightarrow\left[X \mapsto T_{2}\right] t_{12} & (\mathrm{E}-\mathrm{TAPPABS})
\end{array}
$$

Exercise

Given

$$
\begin{aligned}
\mathrm{ID} & \equiv \Lambda \mathrm{~T} \cdot \lambda \mathbf{x}: \mathrm{T} \cdot \mathbf{x} \\
\Gamma_{1} & =\emptyset, \text { Nat, } 5: \text { Nat }
\end{aligned}
$$

type check ID [Nat] 5 in context Γ_{1}.
(On whiteboard)

System F: Church Booleans (1)

Recall untyped encoding:

$$
\begin{aligned}
\text { TRUE } & \equiv \lambda \mathrm{t} \cdot \lambda \mathrm{f} \cdot \mathrm{t} \\
\text { FALSE } & \equiv \lambda \mathrm{t} \cdot \lambda \mathrm{f} . \mathrm{f}
\end{aligned}
$$

We need to:

- assign a common type to these two terms;
- need to work for arbitrary argument types.

Any ideas?
CBOOL \equiv ???

System F: Church Booleans (1)

Recall untyped encoding:

$$
\begin{aligned}
\text { TRUE } & \equiv \lambda \mathrm{t} \cdot \lambda \mathrm{f} \cdot \mathrm{t} \\
\text { FALSE } & \equiv \lambda \mathrm{t} \cdot \lambda \mathrm{f} . \mathrm{f}
\end{aligned}
$$

We need to:

- assign a common type to these two terms;
- need to work for arbitrary argument types.

Parametrise on the type:

$$
\text { CBOOL } \equiv \mathrm{VX} \cdot \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}
$$

System F: Church Booleans (2)

$\mathrm{CBOOL} \equiv \forall \mathrm{X} . \mathrm{X} \rightarrow \mathrm{X} \rightarrow \mathrm{X}$

TRUE : CBOOL
TRUE $\equiv \Lambda \mathrm{X} . \lambda \mathrm{t}: \mathrm{X} . \lambda \mathrm{f}: \mathrm{X} . \mathrm{t}$

FALSE : CBOOL

FALSE $\equiv \Lambda \mathbf{X} \cdot \lambda t: \mathbf{X} \cdot \lambda \mathbf{f}: \mathbf{X} \cdot \mathbf{f}$

NOT : CBOOL \rightarrow CBOOL
NOT $\equiv \lambda \mathbf{b}:$ CBOOL. $\Lambda \mathbf{X} . \lambda t: \mathbf{X} \cdot \lambda \mathbf{f}: \mathbf{X} \cdot \mathrm{b}[\mathrm{X}] \mathrm{f} \mathrm{t}$

Normalization

System F is strongly normalizing, like the simply typed λ-calculus.

Homework

- Given 1 : Nat and 2 : Nat, write down a type-correct application of TRUE to 1 and 2 such that the result is 1.
- Evaluate the above term using the evaluation rules.
- Prove TRUE : CBOOL.
- Prove NOT : CBOOL \rightarrow CBOOL
- Provide a suitable definition of logical conjunction, AND.

