MGS 2007: ADV Lectures 1 & 2

Monads and Monad Transformers

Henrik Nilsson

University of Nottingham, UK
Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)
Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
 - makes programs easier to understand and reason about
 - make lazy evaluation viable
 - enhances modularity and reuse.
Monads (1)

“Shall I be pure or impure?” (Wadler, 1992)

• Absence of effects
 - makes programs easier to understand and reason about
 - make lazy evaluation viable
 - enhances modularity and reuse.

• Effects (state, exceptions, . . .) can
 - yield concise programs
 - facilitate modifications
 - improve the efficiency.
Monads (2)

- Monads bridges the gap: allow effectful programming in a pure setting.
Monads (2)

• Monads bridges the gap: allow effectful programming in a pure setting.

• Key idea: **Computational types**: an object of type $\mathcal{M}A$ denotes a computation of an object of type A.
Monads (2)

- Monads bridges the gap: allow effectful programming in a pure setting.

- Key idea: *Computational types*: an object of type MA denotes a computation of an object of type A.

- *Thus we shall be both pure and impure, whatever takes our fancy!*
Monads (2)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: **Computational types**: an object of type MA denotes a computation of an object of type A.
- **Thus we shall be both pure and impure, whatever takes our fancy!**
- Monads originated in Category Theory.
Monads (2)

• Monads bridges the gap: allow effectful programming in a pure setting.

• Key idea: **Computational types**: an object of type $M A$ denotes a **computation** of an object of type A.

• *Thus we shall be both pure and impure, whatever takes our fancy!*

• Monads originated in Category Theory.

• Adapted by
 - Moggi for structuring denotational semantics
 - Wadler for structuring functional programs
Monads

- promote disciplined use of effects since the type reflects which effects can occur;
Monads (3)

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of “real” effects such as
 - I/O
 - mutable state.
First Two Lectures

- Effectful computations: motivating examples
- Monads
- The Haskell `do`-notation
- Some standard monads
- Monad transformers
Example: A Simple Evaluator

data Exp = Lit Integer
 | Add Exp Exp
 | Sub Exp Exp
 | Mul Exp Exp
 | Div Exp Exp

eval :: Exp -> Integer
eval (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2
Making the evaluator safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 + n2)
safeEval \((\text{Sub } e_1 \ e_2)\) =

\[
\text{case safeEval } e_1 \text{ of }
\]
\[
\begin{align*}
\text{Nothing} & \rightarrow \text{Nothing} \\
\text{Just } n_1 & \rightarrow \\
\hspace{1cm} & \hspace{1cm} \text{case safeEval } e_2 \text{ of }
\begin{align*}
\text{Nothing} & \rightarrow \text{Nothing} \\
\text{Just } n_2 & \rightarrow \text{Just } (n_1 - n_2)
\end{align*}
\end{align*}
\]
Making the evaluator safe (3)

```haskell
safeEval (Mul e1 e2) =
    case safeEval e1 of
      Nothing -> Nothing
      Just n1 ->
        case safeEval e2 of
          Nothing -> Nothing
          Just n2 -> Just (n1 * n2)
```
safeEval (Div e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 ->
 if n2 == 0
 then Nothing
 else Just (n1 `div` n2)
Any common pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?
Any common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- **Sequencing** of evaluations (or computations).
Any common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- *Sequencing* of evaluations (or *computations*).
- If one evaluation fails, fail overall.
Any common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- *Sequencing* of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.
Example: Numbering trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
 where

 ntAux :: Tree a -> Int -> (Tree Int, Int)
 ntAux (Leaf _) n = (Leaf n, n+1)
 ntAux (Node t1 t2) n =
 let (t1', n') = ntAux t1 n
 in let (t2', n'') = ntAux t2 n'
 in (Node t1' t2', n'')
Observations

• Repetitive pattern: threading a counter through a *sequence* of tree numbering *computations*.
Observations

- Repetitive pattern: threading a counter through a *sequence* of tree numbering *computations*.
- It is very easy to pass on the wrong version of the counter!
Observations

• Repetitive pattern: threading a counter through a sequence of tree numbering computations.

• It is very easy to pass on the wrong version of the counter!

Can we do better?
Sequencing is common to both examples, with the outcome of a computation *affecting* subsequent computations.

```
evalSeq :: Maybe Integer
        -> (Integer -> Maybe Integer)
        -> Maybe Integer

evalSeq ma f =
  case ma of
    Nothing  -> Nothing
    Just a   -> f a
```
Sequencing evaluations (2)

\[
\begin{align*}
\text{safeEval} &:: \ Exp \rightarrow \Maybe \ Integer \\
\text{safeEval} \ (\text{Lit} \ n) & = \Just \ n \\
\text{safeEval} \ (\text{Add} \ e1 \ e2) & = \\
& \quad \text{safeEval} \ e1 \ 'evalSeq' \ (\backslash n1 \rightarrow \\
& \quad \text{safeEval} \ e2 \ 'evalSeq' \ (\backslash n2 \rightarrow \\
& \quad \Just \ (n1 + n2)) \\
\text{safeEval} \ (\text{Sub} \ e1 \ e2) & = \\
& \quad \text{safeEval} \ e1 \ 'evalSeq' \ (\backslash n1 \rightarrow \\
& \quad \text{safeEval} \ e2 \ 'evalSeq' \ (\backslash n2 \rightarrow \\
& \quad \Just \ (n1 - n2))
\end{align*}
\]
Sequencing evaluations (3)

\[
\begin{align*}
\text{safeEval (Mul e1 e2)} &= \\
&= \text{safeEval e1 }\langle \text{evalSeq} (\\lambda n1 \rightarrow \\
&\hspace{1cm} \text{safeEval e2 }\langle \text{evalSeq} (\\lambda n2 \rightarrow \\
&\hspace{2cm} \text{Just (n1 - n2)})) \rangle \\
\text{safeEval (Div e1 e2)} &= \\
&= \text{safeEval e1 }\langle \text{evalSeq} (\\lambda n1 \rightarrow \\
&\hspace{1cm} \text{safeEval e2 }\langle \text{evalSeq} (\\lambda n2 \rightarrow \\
&\hspace{2cm} \text{if n2 == 0 then Nothing } \text{else Just (n1 }\langle \text{div} \rangle \langle n2 \rangle)) \rangle \\
\end{align*}
\]
Aside: Scope rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```haskell
safeEval :: Exp -> Maybe Integer
...

safeEval (Add e1 e2) =
    safeEval e1 `evalSeq` \n1 ->
    safeEval e2 `evalSeq` \n2 ->
    Just (n1 + n2)
...
```
Inlining `evalSeq` (1)

```haskell
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 + n2)
```
Inlining `evalSeq` (1)

```haskell
safeEval (Add e1 e2) =
  safeEval e1 `evalSeq` \n1 ->
  safeEval e2 `evalSeq` \n2 ->
  Just (n1 + n2)
```

=

```haskell
safeEval (Add e1 e2) =
  case (safeEval e1) of
    Nothing -> Nothing
    Just a -> (\n1 -> safeEval e2 ...) a
```
Inlining evalSeq (2)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> safeEval e2 `evalSeq` (`evalSeq` (\n2 -> ...))
Inlining \texttt{evalSeq} (2)

\[
\begin{align*}
\text{safeEval} \ (\text{Add} \ e1 \ e2) &= \\
& \begin{cases*}
\text{Nothing} \to \text{Nothing} \\
\text{Just} \ n1 \to \text{safeEval} \ e2 \ \text{`evalSeq`} \ (\backslash n2 \to \ldots)
\end{cases*}
\end{align*}
\]
Inlining evalSeq (3)

\[
\begin{align*}
\text{safeEval} \ (\text{Add} \ e1 \ e2) &= \\
\text{case} \ (\text{safeEval} \ e1) \ &\text{of} \\
\text{Nothing} &\rightarrow \text{Nothing} \\
\text{Just} \ n1 &\rightarrow \text{case} \ \text{safeEval} \ e2 \ &\text{of} \\
\text{Nothing} &\rightarrow \text{Nothing} \\
\text{Just} \ n2 &\rightarrow (\text{Just} \ n1 + n2)
\end{align*}
\]

Excercise 1: Verify the other cases.
Maybe viewed as a computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail.*
Maybe viewed as a computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*. When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails. I.e. *failure is an effect*, implicitly affecting subsequent computations.
• Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.

• When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

• I.e. *failure is an effect*, implicitly affecting subsequent computations.

• Let’s adopt names reflecting our intentions.
Maybe viewed as a computation (2)

Successful computation of a value:

\[
\text{mbReturn} :: a \rightarrow \text{Maybe} \ a
\]
\[
\text{mbReturn} = \text{Just}
\]

Sequencing of possibly failing computations:

\[
\text{mbSeq} :: \text{Maybe} \ a \rightarrow (a \rightarrow \text{Maybe} \ b) \rightarrow \text{Maybe} \ b
\]
\[
\text{mbSeq} \ ma \ f =
\]
\[
\text{case} \ ma \ \text{of}
\]
\[
\text{Nothing} \rightarrow \text{Nothing}
\]
\[
\text{Just} \ a \rightarrow f \ a
\]
Maybe viewed as a computation (3)

Failing computation:

```haskell
mbFail :: Maybe a
mbFail = Nothing
```
The safe evaluator revisited

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
 safeEval e1 `mbSeq` \n1 ->
 safeEval e2 `mbSeq` \n2 ->
 mbReturn (n1 + n2)
...

safeEval (Div e1 e2) =
 safeEval e1 `mbSeq` \n1 ->
 safeEval e2 `mbSeq` \n2 ->
 if n2 == 0 then mbFail
 else mbReturn (n1 \(\text{div}\) n2))
Stateful Computations (1)

- A *stateful computation* consumes a state and returns a result along with a possibly updated state.
Stateful Computations (1)

- A *stateful computation* consumes a state and returns a result along with a possibly updated state.

- The following type synonym captures this idea:

  ```haskell
  type S a = Int -> (a, Int)
  ```

 (Only `Int` state for the sake of simplicity.)
Stateful Computations (1)

• A *stateful computation* consumes a state and returns a result along with a possibly updated state.

• The following type synonym captures this idea:

 \[
 \text{type } S \ a = \text{Int} \to (a, \text{Int})
 \]

 (Only Int state for the sake of simplicity.)

• A value (function) of type \(S \ a \) can now be viewed as denoting a stateful computation computing a value of type \(a \).
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.

- I.e. *state updating is an effect*, implicitly affecting subsequent computations. (As we would expect.)
Stateful Computations (3)

Computation of a value without changing the state:

\[
\text{sReturn} :: a \to S a \\
\text{sReturn} a = ???
\]
Stateful Computations (3)

Computation of a value without changing the state:

\[
sReturn :: a \rightarrow S a \\
sReturn a = \backslash n \rightarrow (a, n)
\]
Stateful Computations (3)

Computation of a value without changing the state:

\[s\text{Return} :: a \rightarrow S \ a \]
\[s\text{Return} \ a = \ \backslash n \rightarrow (a, n) \]

Sequencing of stateful computations:

\[s\text{Seq} :: S \ a \rightarrow (a \rightarrow S \ b) \rightarrow S \ b \]
\[s\text{Seq} \ sa \ f = ??? \]
Stateful Computations (3)

Computation of a value without changing the state:

```haskell
sReturn :: a -> S a
sReturn a = \n -> (a, n)
```

Sequencing of stateful computations:

```haskell
sSeq :: S a -> (a -> S b) -> S b
sSeq sa f = \n ->
   let (a, n’) = sa n
   in f a n’
```
Stateful Computations (4)

Reading and incrementing the state:

\[
sInc :: S \text{ Int} \\
sInc = \lambda n \rightarrow (n, n + 1)
\]
Numbering trees revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> S (Tree Int)
ntAux (Leaf _) =
 sInc `sSeq` \n -> sReturn (Leaf n)
ntAux (Node t1 t2) =
 ntAux t1 `sSeq` \t1' ->
 ntAux t2 `sSeq` \t2' ->
 sReturn (Node t1' t2')
Observations

- The “plumbing” has been captured by the abstractions.
Observations

• The “plumbing” has been captured by the abstractions.

• In particular, there is no longer any risk of “passing on” the wrong version of the state!
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
Comparison of the examples

• Both examples characterized by sequencing of effectful computations.
• Both examples could be neatly structured by introducing:
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a **MONAD**.
Monads in Functional Programming

A monad is represented by:

• A type constructor
 \[M :: \ast \rightarrow \ast \]
 \(M \ T \) represents computations of a value of type \(T \).

• A polymorphic function
 \[\text{return} :: a \rightarrow M \ a \]
 for lifting a value to a computation.

• A polymorphic function
 \[(\gg\gg=) :: M \ a \rightarrow (a \rightarrow M \ b) \rightarrow M \ b \]
 for sequencing computations.
Exercise 2: join and fmap

Equivalently, the notion of a monad can be captured through the following functions:

\[
\begin{align*}
\text{return} & : a \rightarrow M\ a \\
\text{join} & : (M\ (M\ a)) \rightarrow M\ a \\
\text{fmap} & : (a \rightarrow b) \rightarrow (M\ a \rightarrow M\ b)
\end{align*}
\]

\text{join} “flattens” a computation, \text{fmap} “lifts” a function to map computations to computations.

Define \text{join} and \text{fmap} in terms of \texttt{>>=} (and \texttt{return}), and \texttt{>>=} in terms of \text{join} and \text{fmap}.
Exercise 2: Solution

\[\text{join} :: M (M a) \rightarrow M a \]
\[\text{join } mm = mm >>= id \]

\[\text{fmap} :: (a \rightarrow b) \rightarrow M a \rightarrow M b \]
\[\text{fmap } f \ m = m >>= \ \backslash x \rightarrow \ return \ (f \ x) \]

\[(>>=) :: M a \rightarrow (a \rightarrow M b) \rightarrow M b \]
\[m >>= f = \text{join } (\text{fmap } f \ m) \]
Monad laws

Additionally, the following laws must be satisfied:

\[
\text{return } x \gg= f = f \ x \\
\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } m \gg= \text{return } = m \\
\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (m \gg= f) \gg= g = m \gg= \ (\lambda x \rightarrow f \ x \gg= g) \\
\]

I.e., \text{return} is the right and left identity for \gg=, and \gg= is associative.
Exercise 3: The Identity Monad

The *Identity Monad* can be understood as representing *effect-free* computations:

```
type I a = a
```

1. Provide suitable definitions of `return` and `>>=`.
2. Verify that the monad laws hold for your definitions.
Exercise 3: Solution

```
return :: a -> I a
return = id

(>>=) :: I a -> (a -> I b) -> I b
m >>= f = f m
-- or: (>>=) = flip ($)  
```

Simple calculations verify the laws, e.g.:

```
return x >>= f = id x >>= f
= x >>= f
= f x
```
In Haskell, the notion of a monad is captured by a *Type Class*:

```haskell
class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
```

This allows the names of the common functions to be overloaded, and the sharing of derived definitions.
The Haskell monad class has two further methods with default instances:

\[
(\gg >) :: m \ a \to m \ b \to m \ b
\]
\[
m \gg > k = m \gg >_ _ \to k
\]

\[
\text{fail} :: \text{String} \to m \ a
\]
\[
\text{fail} s = \text{error} s
\]
instance Monad Maybe where

 -- return :: a -> Maybe a
 return = Just

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Nothing >>= _ = Nothing
 (Just x) >>= f = f x
Exercise 4: A state monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

\[
\text{newtype } S \ a = S \ (\text{Int} \to (a, \text{Int}))
\]

\[
\text{unS} :: S \ a \to (\text{Int} \to (a, \text{Int}))
\]

\[
\text{unS} \ (S \ f) = f
\]

Provide a Monad instance for \(S \).
Exercise 4: Solution

instance Monad S where
 return a = S (\s -> (a, s))

 m >>= f = S $ \s ->
 let (a, s') = unS m s
 in unS (f a) s'
To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```haskell
fail :: String -> Maybe a
fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a
m1 `catch` m2 =
  case m1 of
    Just _ -> m1
    Nothing -> m2
```
Typical operations on a state monad:

```
set :: Int -> S ()
set a = S (\_ -> ((), a))
```

```
get :: S Int
get = S (\s -> (s, s))
```

Moreover, there is often a need to “run” a computation. E.g.:

```
runS :: S a -> a
runS m = fst (unS m 0)
```
Haskell provides convenient syntax for programming with monads:

```
do
  a <- exp1
  b <- exp2
  return exp3
```

is syntactic sugar for

```
exp1 >>= \a ->
exp2 >>= \b ->
return exp3
```
The \texttt{do}-notation (2)

Computations can be done solely for effect, ignoring the computed value:

\begin{verbatim}
 do
 \textit{exp}_1
 \textit{exp}_2
 \textbf{return} \textit{exp}_3
\end{verbatim}

is syntactic sugar for

\begin{verbatim}
\textit{exp}_1 \texttt{ >>=} _ \texttt{ -> }
\textit{exp}_2 \texttt{ >>=} _ \texttt{ -> }
\textbf{return} \textit{exp}_3
\end{verbatim}
The **do-notation** (3)

A **let-construct** is also provided:

```
  do
  let a = exp₁
  b = exp₂
  return exp₃
```

is equivalent to

```
  do
  a <- return exp₁
  b <- return exp₂
  return exp₃
```
Numbering trees in do-notation

numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)
ntAux (Leaf _) = do
 n <- get
 set (n + 1)
 return (Leaf n)
ntAux (Node t1 t2) = do
 t1' <- ntAux t1
 t2' <- ntAux t2
 return (Node t1' t2')
instance Monad [] where
 return a = [a]
 m >>= f = concat (map f m)
 fail s = []

Example:

do
 x <- [1, 2]
 y <- ['a', 'b']
 return (x, y)

Result: [(1,'a'), (1,'b'), (2,'a'), (2,'b')]
instance Monad ((->) e) where
 return a = const a
 m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e
getEnv = id
The Haskell IO monad

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually:

```
newtype IO a = IO (World -> (a, World))
```

Some operations:

- `putChar :: Char -> IO ()`
- `putStr :: String -> IO ()`
- `putStrLn :: String -> IO ()`
- `getChar :: IO Char`
- `getLine :: IO String`
- `getContents :: String`
Monad Transformers (1)

What if we need to support more than one type of effect?
Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?
Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from scratch:

\[
\text{newtype } \text{SE } s \ a = \text{SE } (s \rightarrow \text{Maybe } (a, s))
\]
Monad Transformers (2)

However:
Monad Transformers (2)

However:

- Not always obvious how: e.g., should the combination of state and error have been

  ```haskell
  newtype SE s a = SE (s -> (Maybe a, s))
  ```
Monad Transformers (2)

However:

- Not always obvious how: e.g., should the combination of state and error have been

 \[\texttt{newtype SE s a = SE (s \to (\text{Maybe a, s}))} \]

- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.
Monad Transformers can help:
Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
Monad Transformers can help:

- A *monad transformer* transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
Monad Transformers can help:

- A monad transformer transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of aspect-oriented programming.
A monad transformer maps monads to monads. This is represented by a type constructor of the following kind:

\[T :: (\star \rightarrow \star) \rightarrow (\star \rightarrow \star) \]
A monad transformer maps monads to monads. This is represented by a type constructor of the following kind:

\[T :: (\star \to \star) \to (\star \to \star) \]

Additionally, we require monad transformers to \textit{add} computational effects. Thus we require a mapping from computations in the underlying monad to computations in the transformed monad:

\[\text{lift} :: M\ a \to T\ M\ a \]
These requirements are captured by the following (multi-parameter) type class:

```haskell
class (Monad m, Monad (t m)) => MonadTransformer t m where
    lift :: m a -> t m a
```
A monad transformer adds specific effects to any monad. Thus there can be many monads supporting the same operations. Introduce classes to handle the overloading:

```haskell
class Monad m => E m where
  eFail :: m a
  eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where
  sSet :: s -> m ()
  sGet :: m s
```
The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```haskell
newtype I a = I a
unI (I a) = a

instance Monad I where
    return a = I a
    m >>= f = f (unI m)

runI :: I a -> a
runI = unI
```
newtype ET m a = ET (m (Maybe a))
unET (ET m) = m

instance Monad m => Monad (ET m) where
 return a = ET (return (Just a))

 m >>= f = ET $ do
 ma <- unET m
 case ma of
 Nothing -> return Nothing
 Just a -> unET (f a)
The Error Monad Transformer (2)

We need the ability to run transformed monads:

```haskell
runET :: Monad m => ET m a -> m a
runET etm = do
  ma <- unET etm
  case ma of
    Just a -> return a
```

ET is a monad transformer:

```haskell
instance Monad m => MonadTransformer ET m where
  lift m = ET (m >>= \a -> return (Just a))
```
The Error Monad Transformer (3)

Any monad transformed by \texttt{ET} is an instance of \texttt{E}:

\begin{verbatim}
instance Monad m => E (ET m) where
 eFail = ET (return Nothing)
 m1 `eHandle` m2 = ET $ do
 ma <- unET m1
 case ma of
 Nothing -> unET m2
 Just _ -> return ma
\end{verbatim}
The Error Monad Transformer (4)

A state monad transformed by \(ET \) is a state monad:

```haskell
instance S m s => S (ET m) s where
  sSet s = lift (sSet s)
  sGet = lift sGet
```
Exercise 5: Running transf. monads

Let

\[
\text{ex1} = \text{eFail `eHandle` return 1}
\]

1. Suggest a possible type for \texttt{ex1}.
2. How can \texttt{ex1} be run, given your type?
Exercise 5: Solution

\[\text{ex1 :: ET I Int}\]
\[\text{ex1} = \text{eFail} \ 'eHandle' \ \text{return} \ 1\]

\[\text{ex1r :: Int}\]
\[\text{ex1r} = \text{runI} (\text{runET} \ \text{ex1})\]
newtype ST s m a = ST (s -> m (a, s))
unST (ST m) = m

instance Monad m => Monad (ST s m) where
 return a = ST ($s -> return (a, s))

 m >>= f = ST ($s -> do
 (a, s') <- unST m s
 unST (f a) s')
We need the ability to run transformed monads:

```haskell
runST :: Monad m => ST s m a -> s -> m a
runST stf s0 = do
    (a, _) <- unST stf s0
    return a
```

ST is a monad transformer:

```haskell
instance Monad m => MonadTransformer (ST s) m where
    lift m = ST (\s -> m >>= \a -> return (a, s))
```
Any monad transformed by \texttt{ST} is an instance of \texttt{S}:

\[
\text{instance Monad } m \Rightarrow \texttt{S (ST s m) s where}
\]
\[
sSet \ s = \texttt{ST (_ \rightarrow return ((), s))}
\]
\[
sGet \ = \texttt{ST (\s \rightarrow return (s, s))}
\]

An error monad transformed by \texttt{ST} is an error monad:

\[
\text{instance E } m \Rightarrow \texttt{E (ST s m) where}
\]
\[
eFail = \texttt{lift eFail}
\]
\[
m1 \ '\text{eHandle}' \ m2 = \texttt{ST $ \s \rightarrow}
\]
\[
\texttt{unST m1 } s \ '\text{eHandle}' \ \texttt{unST m2} \ s
\]
Exercise 6: Effect ordering

Consider the code fragment

```haskell
ex2a :: ST Int (ET I) Int
ex2a = (sSet 3 >> eFail) `eHandle` sGet
```

Note that the exact same code fragment also can be typed as follows:

```haskell
ex2b :: ET (ST Int I) Int
ex2b = (sSet 42 >> eFail) `eHandle` sGet
```

What is

```haskell
runI (runET (runST ex2a 0))
runI (runST (runET ex2b) 0)
```
Exercise 6: Solution

\[
\text{runI \ (runET \ (runST \ ex2a \ 0))} = 0 \\
\text{runI \ (runST \ (runET \ ex2b) \ 0)} = 3
\]
Exercise 7: Alternative ST?

To think about.

Could \texttt{ST} have been defined in some other way, e.g.

\begin{verbatim}
newtype ST s m a = ST (m (s -> (a, s)))
\end{verbatim}

or perhaps

\begin{verbatim}
newtype ST s m a = ST (s -> (m a, s))
\end{verbatim}
Reading (1)

Reading (2)

- Nomaware. All About Monads.

 http://www.nomaware.com/monads