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The following exercises illustrate some of the points covered in the corresponding lecture.
However, they are just suggestions for what you might want to do, and there is no
particular order among them. So just go ahead and attempt whatever problems seem
most interesting to you. And if you feel inspired to try something all-together different,
all the better!

Lecture 1: Lazy Functional Programming
30 March 2009

1. Implement the Sieve of Eratosthenes for computing prime numbers in Haskell.
Recall that the sieve works as follows. Starting from the natural numbers from
2 and up, keep 2 as it is a prime, then strike out all multiples of 2 from the
rest of the numbers. The smallest remaining number is also a prime, so keep it,
then strike out all multiples of it form the the remaining numbers. And so on.
(David Turner was the first to suggest that this algorithm could be implemented
very elegantly and concisely in the purely-functional, non-strict language SASL in
1975: http://en.wikipedia.org/wiki/Sieve of Eratosthenes.)

2. A problem, due to the mathematician W. R. Hamming, is to write a program that
produces an infinite list of numbers with the following properties:

i The list is in ascending order, without duplicates.

ii The list begins with the number 1.

iii If the list contains the number x, then it also contains the numbers 2x, 3x,
and 5x.

iv The list contains no other numbers.

The following Haskell code solves the problem:

merge xxs@(x:xs) yys@(y:ys) | x == y = x : merge xs ys

| x < y = x : merge xs yys

| x > y = y : merge xxs ys

hamming = 1 : merge (map (2*) hamming)

(merge (map (3*) hamming)

(map (5*) hamming))

Draw the four cyclic graphs that represent hamming after the first 1, 2, 3, and 4
elements have been printed.

3. Implement a simple spreadsheet evaluator as suggested in the lecture notes. For
example, start with the following abstract syntax for the expressions in the spread-
sheet cells:

type CellRef = (Int,Int)

data BinOp = Add | Sub | Mul | Div

data Exp = LitInt Integer -- Integer constants

| Ref CellRef -- Reference to the value of a cell

| BinOpApp BinOp Exp Exp -- Binary operator application

| Sum CellRef CellRef -- Summing a range of cells



4. Lazy evaluation is very handy for implementing attribute grammar evaluators.
The idea is is to write a recursive function traversing (derivation) trees with in-
herited attributes as extra arguments and synthesised attributes as results (or
attributed tree nodes, depending on the application). Lazy evaluation will take
care of evaluating the attributes in a suitable order (assuming the system of at-
tribute equations has a solution).

Here is a simple attributed grammar. It’s overall purpose is to compute a version
of the tree with all leaves sorted numerically as a synthesised attribute. Inherited
attributes are indicated by ↓, synthesised attributes by ↑.

Productions Attribute Equations

S → T T↓itips = []
T↓isorted = sort T↑stips

S↑tree = T↑tree

T → Tip x T↑stips = x : T↓itips

T↑ssorted = tail T↓isorted

T↑tree = Tip (head T↓sorted)
T → Node TL TR TR↓itips = T↓itips

TL↓itips = TR↑stips

T↑stips = TL↑stips

TL↓isorted = T↓isorted

TR↓isorted = TL↑ssorted

T↑ssorted = TR↑ssorted

T↑tree = Node TL↑tree TR↑tree

Implement an evaluator for this grammar in Haskell. Note that the result is a
one-pass algorithm for sorting a tree. Assuming the following definition of the
tree type:

data Tree = Leaf Int | Node Tree Tree

the type signature for the main tree traversal function could be:

sortTreeAux :: Tree -> [Int] -> [Int] -> ([Int], [Int], Tree)

where the second and third arguments correspond to, respectively, the inherited
attributes itips and isorted , and the result tuple to the synthesised attributes stips ,
ssorted , tree in that order.

(This exercise is inspired by Thomas Johnsson’s paper Attribute Grammars as a
Functional Programming Paradigm, FPCA 1987.)

5. Solve some problem(s) using dynamic programming in Haskell. If you have Internet
access, you can find a number of suitable problems for example at the following
addresses:

• http://en.wikipedia.org/wiki/Dynamic programming

• http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html



Lecture 2: Purely Functional Data Structures
31 March 2009

1. Consider any remaining exercises from the lecture notes.

2. Write a function drop :: Int -> RList a -> RList a that deletes the first n

elements for a binary random-access list. Your function should run in O(logn)
time. (From Purely Functional Data Structures by Chris Okasaki, 1998.)

3. Reimplement binary random-access lists using a sparse representation such as:

data Tree a = Leaf a | Node Int (Tree a) (Tree a)

type RList a = [Tree a]

(From Purely Functional Data Structures by Chris Okasaki, 1998.)

4. Implement drop as specified above for skew binary random-access lists.

Lecture 3: Monads
1 April 2009

1. Consider any remaining exercises from the lecture notes.

2. Verify that both Maybe a and S a indeed are monads by verifying the monad laws
for mbReturn and mbSeq, and sReturn and sSeq, respectively.

3. It turns out that many familiar data types in fact can be viewed as monads. For
example, [a] can be understood as representing a computation with zero or more
possible results (“nondeterminism”), and thus forms a monad with the appropriate
definitions for return and >>=. Without “cheating” by looking ahead at the next
lecture, show that [a] is a monad. Hint: return corresponds to a computation
with exactly one result, while >>= needs to feed all possible outcomes form the
first computation into the second, and then collect all possible results from that.



Lecture 4: More about Monads
2 April 2009

1. Consider any remaining exercises from the lecture notes.

2. Below are the type signatures for a number of monad utility functions from the
Haskell prelude and the module Monad. Define these utilities in terms of the basic
monad operations. (If it is not reasonably clear from the type signatures what the
intended meaning of each function is, ask!)

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> (m a -> m b)

3. The Diagnostics monad D mentioned in the lectures represents computations that
can emit error messages and, if necessary, give up completely and stop. Here is a
variation of some of the operations on this monad:

Operation Type Purpose

emitErrD String -> D () Emit an error message.
failD String -> D a Emit an error message and

stop.
failIfErrorsD String -> D a Stop if one or more error

messages have been emit-
ted.

stopD D a Stop.
runD D a -> (Maybe a, [String]) Run a diagnostic compu-

tation, returning any re-
sult and a list of all emit-
ted error messages.

• Think about what effects the diagnostics monad combine. For example, there
is a standard notion of a writer monad :

type W a = (a, T)

for any type T that is a monoid : has an identity element and an associa-
tive binary operation. Such a monad is typically used for logging purposes.
For example, T could be taken to be lists of error messages (strings), with
list concatenation ++ as the binary operation to combine the output from
sequentially composed computations and [] as the identity element. Would
a reader monad be suitable for the logging part of the diagnostics monad, or
is a more general notion of state needed?

• Implement the diagnostics monad from scratch.

• Reimplement the diagnostics monad by using monad transformers to de-
fine the basic monad, and then defining the application-specific interface de-
scribed above in terms of the standard operations for the monad obtained
through the transformations.


