What Is a Functional Language? (2)

MGS 2009: FUN Lecture 1

Lazy Functional Programming

Henrik Nilsson

University of Nottingham, UK

What Is a Functional Language? (1)

- Imperative Languages:

- Implicit state.
- Computation essentially a sequence of side-effecting actions.
- Declarative Languages (Lloyd 1994):
- No implicit state.
- A program can be regarded as a theory.
- Computation can be seen as deduction from this theory.
- Examples: Logic and Functional Languages.

Another perspective:

- Algorithm = Logic + Control
- Declarative programming emphasises the logic ("what") rather than the control ("how").
- Examples:
- Resolution (logic programming)
- Lazy evaluation (found in some functional and logic languages)

What Is a Functional Language? (3)

Declarative languages for practical use tend to be only weakly declarative; i.e., not totally free of control aspects. For example:

- Equations in functional languages are directed.
- Order of patterns often matters for pattern matching.
- Constructs for taking control over the order of evaluation.

What Is a Functional Language? (4)

Exactly what constitute a functional language is somewhat contentious.

Pragmatically, a functional language is one that encourages a mostly declarative, functional style of programming.

Typical features/characteristics:

- Functions are first-class entities.
- Computation expressed through function application.
- Recursive (and co-recursive) definitions.

What Is a Functional Language? (5)

This "definition" covers both:

- Pure functional languages: no side effects
- (Weakly) declarative: equational reasoning valid (referentially transparent).
- Example: Haskell
- Mostly functional languages: some side effects, e.g. for I/O.
- Equational reasoning with care.
- Examples: ML, OCaml, Scheme, Erlang

This and the Following Lectures

- In this and the following lectures we will explore Purely Functional Programming through the use of Haskell.
- Theme of today: Relinquishing control: exploiting lazy evaluation

Will assume some familiarity with functional programming in a language like Haskell or ML. Will explain Haskell syntax and other points as needed: Just ask!

Evaluation Orders (1)

Consider:

```
sqr x = x * x
dbl x = x + x
main = sqr (dbl (2 + 3))
```

Many possible reduction orders. Innermost, leftmost redex first is called Applicative Order Reduction (AOR):

```
main }=>\mathrm{ sqr (dbl (2 + 3)) # sqr (dbl 5)
sqr (5 + 5) }=>\mathrm{ sqr 10 }=>\underline{10 * 10 }=>10
```

This is just Call-By-Value.

Evaluation Orders (2)

Outermost, leftmost redex first is called Normal Order Reduction (NOR):

```
main}=>\mathrm{ sqr (dbl (2 + 3))
| dbl (2 + 3) * dbl (2 + 3)
=>((2+3)}+(2+3))* dbl (2 + 3)
=>(5 + (2+3)) * dbl (2 + 3)
# (5 + 5) * dbl (2 + 3) => 10 * dbl (2 + 3)
=> .. }=>\mathrm{ 10 * 10 }=>10
```

(Applications of arithmetic operations only considered redexes once arguments are numbers.) Demand-driven evaluation or Call-By-Need

Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?

- Best possible termination properties. Two important theorems from the λ-calculus:
- Church-Rosser Theorem I:

No term has more than one normal form.

- Church-Rosser Theorem II:

If a term has a normal form, then NOR will find it.

Why Normal Order Reduction? (2)

- More expressive power; e.g.:
- "Infinite" data structures
- Circular programming
- More declarative code as control aspects (order of evaluation) left implicit.

Strict vs. Non-strict Semantics (1)

- \perp, or "bottom", the undefined value, representing errors and non-termination.
- A function f is strict iff:

$$
f \perp=\perp
$$

For example, + is strict in both its arguments:

$$
\begin{aligned}
& (0 / 0)+1=\perp+1=\perp \\
& 1+(0 / 0)=1+\perp=\perp
\end{aligned}
$$

Strict vs. Non-strict Semantics (2)

Consider:

```
foo x = 1
```

What is the value of foo ($0 / 0$)?

- AOR: foo ($0 / 0$) $\Rightarrow \perp$ Conceptually, foo $\perp=\perp$; i.e., foo is strict.
- NOR: foo ($0 / 0$) $\Rightarrow 1$

Conceptually, fo० $\perp=1$; i.e., foo is non-strict.
Thus, NOR results in non-strict semantics.
Note: NOR gave well-defined result, AOR did not.

Lazy Evaluation (1)

Lazy evaluation is an technique for implementing NOR more efficiently:

- An expression is evaluated only if needed.
- Sharing employed to ensure any one expression evaluated at most once.

Lazy Evaluation (2)

Infinite Data Structures (1)

```
take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
from n = n : from (n+1)
nats = from 0
main = take 5 nats
```


Infinite Data Structures (2)

Circular Data Structures (2)

```
take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
ones = 1 : ones
main = take 5 ones
```


Circular Data Structures (2)

A non-empty tree type:

$$
\text { data Tree = Leaf Int } \mid \text { Node Tree Tree }
$$

Suppose we would like to write a function that replaces each leaf integer in a given tree with the smallest integer in that tree.
How many passes over the tree are needed?

One!

Circular Programming (2)

Write a function that replaces all leaf integers by a given integer, and returns the smallest integer of the given tree:

```
fmr :: Int -> Tree -> (Tree, Int)
fmr m (Leaf i) = (Leaf m, i)
fmr m (Node tl tr) =
    (Node tl' tr', min ml mr)
    where
        (tl', ml) = fmr m tl
        (tr', mr) = fmr m tr
```


Circular Programming (3)

For a given tree t, the desired tree is obtained as the solution to the equation:

$$
\left(t^{\prime}, m\right)=f m r m t
$$

Thus:

```
findMinReplace t = t'
    where
    (t', m) = fmr m t
```

Intuitively, this works because fmr can compute its result without needing to know the value of m.

A Simple Spreadsheet Evaluator

	a	b	c		a	b	c
1	$c 3+c 2$			\Rightarrow	37		
2	a3 * b2	2	$\mathrm{a} 2+\mathrm{b} 2$		14	2	16
3	7		$a 2+\mathrm{a} 3$		7		21
	S						
$r=$ array (bounds s)							
[(i, j), eval r (s! (i,j)))							

The evaluated sheet is simply the solution to the stated equation. No need to worry about evaluation order. Any caveats?

Breadth-first Numbering (1)

Consider the problem of numbering a possibly infinitely deep tree in breadth-first order:

Breadth-first Numbering (2)

The following algorithm is due to G . Jones and J . Gibbons (1992), but the presentation differs.
Consider the following tree type:

```
data Tree a = Empty
    | Node (Tree a) a (Tree a)
```

Define:
width $t i$ The width of a tree t at level i (0 origin).
label $t i j$ The j th label at level i of a tree t (0 origin).

Breadth-first Numbering (3)

The following system of equations defines breadth-first numbering:

$$
\begin{align*}
\text { label } t 00 & =1 \tag{1}\\
\text { label } t(i+1) 0 & =\text { label } t i 0+\text { width } t i \tag{2}\\
\text { label } t i(j+1) & =\text { label } t i j+1 \tag{3}
\end{align*}
$$

Note that label $t i 0$ is defined for all levels i (as long as the widths of all tree levels are finite).

Breadth-first Numbering (4)

The code on the next slide sets up the defining system of equations.

- Streams (infinite lists) of labels are used as a mediating data structure to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.
- As there manifestly are no cyclic dependences among the equations, we can entrust the details of solving them to the lazy evaluation machinery, in the safe knowledge that a solution will be found.

Breadth-first Numbering (5)

bfn : : Tree a -> Tree Integer

bfn $t=t^{\prime}$
where
(ns, $\left.t^{\prime}\right)=$ bfnAux (1 : ns) t
bfnAux : : [Integer] $->$ Tree a
-> ([Integer], Tree Integer)
bfnAux ns Empty $=$ (ns, Empty) bfnAux ($n: n s$) (Node $t l+t r)=\left((n+1): n s^{\prime \prime}\right.$, Node tl' n tr')
where
(ns', tl') $=$ bfnAux ns tl (ns'r, tr') $=$ bfnAux $n s^{\prime}$ tr

Dynamic Programming

Dynamic Programming:

- Create a table of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us from having to worry about finding a suitable evaluation order.

The Triangulation Problem (1)

Select a set of chords that divides a convex polygon into triangles such that:

- no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal length.

See Aho, Hopcroft, Ullman (1983) for details.

The Triangulation Problem (2)

The Triangulation Problem (3)

- Let $S_{i s}$ denote the subproblem of size s starting at vertex v_{i} of finding the minimum triangulation of the polygon $v_{i}, v_{i+1}, \ldots, v_{i+s-1}$ (counting modulo the number of vertices).
- Subproblems of size less than 4 are trivial.
- Solving $S_{i s}$ is done by solving $S_{i, k+1}$ and $S_{i+k, s-k}$ for all $k, 1 \leq k \leq s-2$
- The obvious recursive formulation results in 3^{s-4} recursive calls.
- But for n vertices there are only $n(n-4)$ non-trivial subproblems!

The Triangulation Problem (4)

Reading

- Let $C_{i s}$ denote the minimal triangulation cost of $S_{i s}$.
- Let $D\left(v_{p}, v_{q}\right)$ denote the length of a chord between v_{p} and v_{q} (length is 0 for non-chords; i.e. adjacent v_{p} and v_{q}).
- For $s \geq 4$:
$C_{i s}=\min _{k \in[1, s-2]}\left\{\begin{array}{l}C_{i, k+1}+C_{i+k, s-k} \\ +D\left(v_{i}, v_{i+k}\right)+D\left(v_{i+k}, v_{i+s-1}\right)\end{array}\right\}$
- For $s<4, S_{i s}=0$.

The Triangulation Problem (5)

These equations can be transliterated straight into Haskell:

```
triCost :: Polygon -> Double
triCost p = cost! (0,n) where
    cost = array ( (0,0), (n-1,n))
            ([ ((i,s),
        minimum [ cost!(i, k+1
            + cost!((i+k) `mod` n, s-k)
                            + dist p i ((i+k) `mod` n)
                    + dist p ((i+k) `mod` n
                    ((i+s-1) `mod` n)
                    | k <- [1..s-2] ])
        i <- [0..n-1], s <- [4..n] ] ++
        [ (i,s), 0.0)
        | i <- [0..n-1], s <- [0..3] ])
    n = snd (bounds b) + 1
```

