
MGS 2009: FUN Lecture 2
Purely Functional Data Structures

Henrik Nilsson

University of Nottingham, UK

MGS 2009: FUN Lecture 2 – p.1/31

Purely Functional Data structures (1)

Why is there a need to consider purely functional
data structures?

• The standard implementations of many data
structures assume imperative update. To
what extent truly necessary?

• Purely functional data structures are persistent ,
while imperative ones are ephemeral :
- Persistence is a useful property in its own

right.
- Can’t expect added benefits for free.

MGS 2009: FUN Lecture 2 – p.2/31

Purely Functional Data structures (2)

This lecture draws from:

Chris Okasaki. Purely Functional Data
Structures. Cambridge University Press,
1998.

We will look at some examples of how numerical
representations can be used to derive purely
functional data structures.

MGS 2009: FUN Lecture 2 – p.3/31

Numerical Representations (1)

Strong analogy between lists and the usual
representation of natural numbers:

data List a =

Nil

| Cons a (List a)

tail (Cons _ xs) = xs

append Nil ys = ys

append (Cons x xs) ys =

Cons x (append xs ys)

data Nat =

Zero

| Succ Nat

pred (Succ n) = n

plus Zero n = n

plus (Succ m) n =

Succ (plus m n)

MGS 2009: FUN Lecture 2 – p.4/31



Numerical Representations (2)

This analogy can be taken further for designing
container structures because:

• inserting an element resembles incrementing
a number

• combining two containers resembles adding
two numbers

etc.

Thus, representations of natural numbers with certain
properties induce container types with similar
properties. Called Numerical Representations .

MGS 2009: FUN Lecture 2 – p.5/31

Random Access Lists

We will consider Random Access Lists in the
following. Signature:

data RList a

empty :: RList a
isEmpty :: RList a -> Bool
cons :: a -> RList a -> RList a
head :: RList a -> a
tail :: RList a -> RList a
lookup :: Int -> RList a -> a
update :: Int -> RList a -> RList a

MGS 2009: FUN Lecture 2 – p.6/31

Positional Number Systems (1)
• A number is written as a sequence of digits

b0b1 . . . bm−1, where bi ∈ Di for a fixed family of
digit sets given by the positional system.

• b0 is the least significant digit, bm−1 the most
significant digit (note the ordering).

• Each digit bi has a weight wi. Thus:

value(b0b1 . . . bm−1) =
m−1∑

0

biwi

where the fixed sequence of weights wi is
given by the positional system.

MGS 2009: FUN Lecture 2 – p.7/31

Positional Number Systems (2)

• A number is written written in base B if
wi = Bi and Di = {0, . . . , B − 1}.

• The sequence wi is usually but not
necessarily increasing.

• A number system is redundant if there is
more than one way to represent some
numbers (disallowing trailing zeroes).

• A representation of a positional number
system can be dense , meaning including
zeroes, or sparse , eliding zeroes.

MGS 2009: FUN Lecture 2 – p.8/31



Exercise 1: Positional Number Systems

Suppose wi = 2i and Di = {0, 1, 2}. Give three
different ways to represent 17.

MGS 2009: FUN Lecture 2 – p.9/31

Exercise 1: Solution

• 10001, since value(10001) = 1 · 20 + 1 · 24

• 1002, since value(1002) = 1 · 20 + 2 · 23

• 1021, since value(1021) = 1 · 20 + 2 · 22 + 1 · 23

• 1211, since
value(1211) = 1 · 20 + 2 · 21 + 1 · 22 + 1 · 23

MGS 2009: FUN Lecture 2 – p.10/31

From Positional System to Container

Given a positional system, a numerical
representation may be derived as follows:

• for a container of size n, consider a
representation b0b1 . . . bm−1 of n,

• represent the collection of n elements by a
sequence of trees of size wi such that there
are bi trees of that size.

For example, given the positional system of
exercise 1, a container of size 17 might be
represented by 1 tree of size 1, 2 trees of size 2,
1 tree of size 4, and 1 tree of size 8.

MGS 2009: FUN Lecture 2 – p.11/31

What Kind of Trees?

The kind of tree should be chosen depending on
needed sizes and properties. Two possibilities:

• Complete Binary Leaf Trees
data Tree a = Leaf a

| Node (Tree a) (Tree a)

Sizes: 2n, n ≥ 0

• Complete Binary Trees
data Tree a = Leaf a

| Node (Tree a) a (Tree a)

Sizes: 2n+1 − 1, n ≥ 0

MGS 2009: FUN Lecture 2 – p.12/31



Binary Random Access Lists (1)

Binary Random Access Lists are induced by

• the usual binary representation, i.e. wi = 2i,
Di = {0, 1}

• complete binary leaf trees

Thus:

data Tree a = Leaf a

| Node Int (Tree a) (Tree a)

data Digit a = Zero | One (Tree a)

type RList a = [Digit a]

The Int field keeps track of tree size for speed.
MGS 2009: FUN Lecture 2 – p.13/31

Binary Random Access Lists (2)

The increment function on dense binary
numbers:

inc [] = [One]

inc (Zero : ds) = One : ds

inc (One : ds) = Zero : inc ds -- Carry

MGS 2009: FUN Lecture 2 – p.14/31

Binary Random Access Lists (3)

Inserting an element first in a binary random
access list is analogous to inc:

cons :: a -> RList a -> RList a

cons x ts = consTree (Leaf x) ts

consTree :: Tree a -> RList a -> RList a

consTree t [] = [One t]

consTree t (Zero : ts) = (One t : ts)

consTree t (One t’ : ts) =

Zero : consTree (link t t’) ts

MGS 2009: FUN Lecture 2 – p.15/31

Binary Random Access Lists (4)

The utility function link joins two equally sized
trees:

-- t1 and t2 are assumed to be the same size

link t1 t2 = Node (2 * size t1) t1 t2

MGS 2009: FUN Lecture 2 – p.16/31



Exercise 2: unconsTree

The decrement function on dense binary
numbers:

dec [One] = []

dec (One : ds) = Zero : ds

dec (Zero : ds) = One : dec ds -- Borrow

Define unconsTree following the above pattern:

unconsTree :: RList a -> (Tree a, RList a)

And then head and tail:

head :: RList a -> a

tail :: RList a -> RList a

MGS 2009: FUN Lecture 2 – p.17/31

Exercise 2: Solution (1)

unconsTree :: RList a -> (Tree a, RList a)

unconsTree [One t] = (t, [])

unconsTree (One t : ts) = (t, Zero : ts)

unconsTree (Zero : ts) = (t1, One t2 : ts’)

where

(Node _ t1 t2, ts’) = unconsTree ts

Note: partial operation.

MGS 2009: FUN Lecture 2 – p.18/31

Exercise 2: Solution (2)

head :: RList a -> a

head ts = x

where

(Leaf x, _) = unconsTree ts

tail :: RList a -> RList a

tail ts = ts’

where

(_, ts’) = unconsTree ts

MGS 2009: FUN Lecture 2 – p.19/31

Binary Random Access Lists (5)

Lookup is done in two stages: first find the right
tree, then lookup in that tree:

lookup :: Int -> RList a -> a

lookup i (Zero : ts) = lookup i ts

lookup i (One t : ts)

| i < s = lookupTree i t

| otherwise = lookup (i - s) ts

where

s = size t

Note: partial operation.

MGS 2009: FUN Lecture 2 – p.20/31



Binary Random Access Lists (6)

lookupTree :: Int -> Tree a -> a

lookupTree _ (Leaf x) = x

lookupTree i (Node w t1 t2)

| i < w ‘div‘ 2 =

lookupTree i t1

| otherwise =

lookupTree (i - w ‘div‘ 2) t2

The operation update has exactly the same
structure.

MGS 2009: FUN Lecture 2 – p.21/31

Binary Random Access Lists (7)

Time complexity:
• cons, head, tail, perform O(1) work per

digit, thus O(log n) worst case.

• lookup and update take O(log n) to find the
right tree, and then O(log n) to find the right
element in that tree, so O(log n) worst case
overall.

Time complexity for cons, head, tail
disappointing: can we do better?

MGS 2009: FUN Lecture 2 – p.22/31

Skew Binary Numbers (1)

Skew Binary Numbers:

• wi = 2i+1 − 1 (rather than 2i)
• Di = {0, 1, 2}

Representation is redundant. But we obtain a
canonical form if we insist that only the least
significant non-zero digit may be 2.

Note: The weights correspond to the sizes of
complete binary trees.

MGS 2009: FUN Lecture 2 – p.23/31

Skew Binary Numbers (2)

Theorem: Every natural number n has a unique
skew binary canonical form.
Proof sketch. By induction on n.

• Base case: the case for 0 is direct.

MGS 2009: FUN Lecture 2 – p.24/31



Skew Binary Numbers (3)

• Inductive case. Assume n has a unique skew
binary representation b0b1 . . . bm−1

- If the least significant non-zero digit is
smaller than 2, then n + 1 has a unique
skew binary representation obtained by
adding 1 to the least significant digit b0.

- If the least significant non-zero digit bi is 2,
then note that 1 + 2(2i+1 − 1) = 2i+2 − 1.
Thus n + 1 has a unique skew binary
representation obtained by setting bi to 0
and adding 1 to bi+1.

MGS 2009: FUN Lecture 2 – p.25/31

Exercise 3: Skew Binary Numbers
• Give the canonical skew binary

representation for 31, 30, 29, and 28.
• Assume a sparse skew binary representation

of the natural numbers
type Nat = [Int]

where the integers represent the weight of
each non-zero digit. Assume further that the
integers are stored in increasing order, except
that the first two may be equal indicating that
the smallest non-zero digit is 2.
Implement a function inc to increment a
natural number.

MGS 2009: FUN Lecture 2 – p.26/31

Exercise 3: Solution

• 00001, 0002, 0021, 0211

• inc :: Nat -> Nat

inc (w1 : w2 : ws)

| w1 == w2 = w1 * 2 + 1 : ws

inc ws = 1 : ws

MGS 2009: FUN Lecture 2 – p.27/31

Skew Binary Random Access Lists (1)

data Tree a = Leaf a | Node (Tree a) a (Tree a)

type RList a = [(Int, Tree a)]

empty :: RList a

empty = []

cons :: a -> RList a -> RList a

cons x ((w1, t1) : (w2, t2) : wts) | w1 == w2 =

(w1 * 2 + 1, Node t1 x t2) : wts

cons x wts = ((1, Leaf x) : wts)

MGS 2009: FUN Lecture 2 – p.28/31



Skew Binary Random Access Lists (2)

head :: RList a -> a

head ((_, Leaf x) : _) = x

head ((_, Node _ x _) : _) = x

tail :: RList a -> RList a

tail ((_, Leaf _): wts) = wts

tail ((w, Node t1 _ t2) : wts) =

(w’, t1) : (w’, t2) : wts

where

w’ = w ‘div‘ 2

Note: again, partial operations.

MGS 2009: FUN Lecture 2 – p.29/31

Skew Binary Random Access Lists (3)
lookup :: Int -> RList a -> a

lookup i ((w, t) : wts)

| i < w = lookupTree i w t

| otherwise = lookup (i - w) wts

lookupTree :: Int -> Int -> Tree a -> a

lookupTree _ _ (Leaf x) = x

lookupTree i w (Node t1 x t2)

| i == 0 = x

| i < w’ = lookupTree (i - 1) w’ t1

| otherwise = lookupTree (i - w’ - 1) w’ t2

where

w’ = w ‘div‘ 2

MGS 2009: FUN Lecture 2 – p.30/31

Skew Binary Random Access Lists (4)

Time complexity:
• cons, head, tail: O(1).

• lookup and update take O(log n) to find the
right tree, and then O(log n) to find the right
element in that tree, so O(log n) worst case
overall.

Okasaki:

Although there are better implementations
of lists, and better implementations of
(persistent) arrays, none are better at both.

MGS 2009: FUN Lecture 2 – p.31/31


	Purely Functional Data structures (1)
	Purely Functional Data structures (2)
	Numerical Representations (1)
	Numerical Representations (2)
	Random Access Lists
	Positional Number Systems (1)
	Positional Number Systems (2)
	Exercise 1: Positional Number Systems
	Exercise 1: Solution
	From Positional System to Container
	What Kind of Trees?
	Binary Random Access Lists (1)
	Binary Random Access Lists (2)
	Binary Random Access Lists (3)
	Binary Random Access Lists (4)
	Exercise 2: 	exttt {unconsTree}
	Exercise 2: Solution (1)
	Exercise 2: Solution (2)
	Binary Random Access Lists (5)
	Binary Random Access Lists (6)
	Binary Random Access Lists (7)
	Skew Binary Numbers (1)
	Skew Binary Numbers (2)
	Skew Binary Numbers (3)
	Exercise 3: Skew Binary Numbers
	Exercise 3: Solution
	Skew Binary Random Access Lists (1)
	Skew Binary Random Access Lists (2)
	Skew Binary Random Access Lists (3)
	Skew Binary Random Access Lists (4)

