Henrik Nilsson

University of Nottingham, UK

MGS 2009: FUN Lecture 3 - p.1/48

A Blessing and a Curse

» The BIG advantage of pure functional
programming is
“everything is explicit;”
i.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large
programs.

» The BIG problem with pure functional
programming is
“everything is explicit”
Can add a lot of clutter, make it hard to
maintain code

MGS 2000: FUN Lecture 3 - p2/48

Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

- Absence of effects

- makes programs easier to understand and
reason about

- makes lazy evaluation viable

- enhances modularity and reuse.
- Effects (state, exceptions, ...) can

- help making code concise

- facilitate maintenance

- imﬁrove the efficiency.

MGS 2009 FUN Lecture 3 - p3148

Example: A Compiler Fragment (4)

Example: A Compiler Fragment (1)

ent er Var inserts a variable at the given scope
level and of the given type into an environment.

identDefs | env [] = ([], env, [])
identDefs | env ((i,t,e) : ds) =

- Check that no variable with same name has \(Nf]' (L€1) dsT, env'’, MBL+MB2++s3)
been defined at the same scope level. ‘(”e D - i dent Aux |
e, Nns = 1 aent Aux env e
- If not, the new variable is entered, and the (env', ms2) =
resulting environment s returned. case entervVar i | t env of
» Otherwise aherror message is returned. Left env’ -> (env', [])
Right m -> (env, [n)
enterVar :: 1d -> -> Type =x_ Env (ds’, env'', me3) =

-> Either

Eror WD

MGS 2009 FUN Lecture 3 - p4/48

identDefs | env' ds

MGS 2009: FUN Lecture 3~ p7/48

Example: A Compiler Fragment (2) Example: A Compiler Fragment (5)

Goals of the identification ~ phase: Error checking and collection of error messages

arguably added a lot of clutter. The core of the
algorithm is this:

- Annotate each applied identifier occurrence
with attributes of the corresponding variable
declaration.

l.e., map unanna identDefs | env []1 = ([], env)

identDefs | env ((i,t,e) : ds) =

) L. . ((i,t,e’) : ds’, env'’")
- Report conflicting vafiable definitions and wher e
unaefined variables.

e’ identAux | env e

jdentification :: \ env’ = entervar i | t env
- ds’, env’’ identDefs | env' ds
> AT (B env)

MGS 2009: FUN Lecture 3 p/4s

Example: A Compiler Fragment (3) Answer to Conundrum: Monads (1)

» Monads bridges the gap: allow effectful

Functions that do the real work: programming in a pure setting.

- Key idea: Computational types : an object of
type M A denotes a computation of an
object of type A.

» Thus we shall be both pure and impure,
whatever takes our fancy!

ident Aux ::
Int -> Env -> Exp ()
-> (Exp Attr, [ErrorMsg])

identDefs ::
Int -> Env -> [(lId, Type, Exp ())]
-> ([(1d, Type, Exp Attr)],

» Monads originated in Category Theory.
- Adapted by

Env,
[ErrorMsg]) - Moggi for structuring denotational semantics
- Wi ii ﬁi iiiljcturing functional programs

Answer to Conundrum: Monads (2)

Monads

» promote disciplined use of effects since the
type reflects which effects can occur;

- allow great flexibility in tailoring the effect
structure to precise needs;

= support changes to the effect structure with
minimal impact on the overall program structure;

- allow integration into a pure setting of real
effects such as

- 110

ThisLecture

Pragmatic introduction to monads:

MGS 2009 FUN Lecture 3 - p10148

« Effectful computations
« ldentifying a common pattern
» Monads as a design pattern

Example 1: A Smple Evaluator
data Exp = Lit Integer
| Add Exp Exp
| Sub Exp Exp
| Mul Exp Exp
| Div Exp Exp
eval :: Exp -> Integer
eval (Lit n) =n

eval (Add el e2) = eval el + eval e2
eval (Sub el e2) = eval el - eval e2
eval (Ml el e2) = eval el * eval e2
eval (Div el e2) = eval el ‘div' eval e2

MGS 2009 FUN Lecture 3 - 12148

saf eEval
saf eEval (Lit n)
saf eEval (Add el

case saf eEval

Not hi ng -> Not hi ng

Making the Evaluator Safe (1)

data Maybe a = Nothing |

Exp -> Maybe I nteger

= Just n
e2) =
el of

Just nl ->

case

Not hi ng -> Not hi ng

saf eEval

Making the Evaluator Safe (4)

safeEval (Div el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case saf eEval e2 of
Not hi ng -> Not hi ng
Just n2 ->
if n2==0
e2 of then Not hi ng
el se Just (nl ‘div‘ n2)

Just a

Just n2 -> Just (nl + n2)

MGS 2009: FUN Lecture 3 - 13148 MGS 2009: FUN Lecture 3 - p16/45

Making the Evaluator Safe (2)

saf eEval (Sub el

case saf eEval

e2) =
el of

Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

Not hi ng -> Not hi ng
Just nl ->
case saf eEval

Not hi ng -> Not hi ng
Just n2 -> Just (nl - n2)

case saf eEval

Not hi ng -> Not hi ng

Making the Evaluator Safe (3)

saf eEval (Mil el e2) =

el of

Just nl ->
case saf eEval

Not hi ng -> Not hi ng
Just n2 -> Just (nl * n2)

We note:

e2 of » Sequencing of evaluations (or
computations).

= If one evaluation fails, fail overall.

- Otherwise, make result available to following
evaluations.

MGS 2009: FUN Lecture 3 p14148 MGS 2000: FUN Lecture 3 - p7148

Sequencing Evaluations

eval Seq :: Maybe | nteger
-> (Integer -> Maybe Integer)
-> Maybe | nt eger
eval Seq ma f =
e2 of case ma of
Not hi ng -> Not hi ng
Just a ->f a

MGS 2009: FUN Lecture 3 - 15148

MGS 2009: FUN Lecture 3 - 18145

Exercise 1. Refactoring saf eEval

Rewrite saf eEval , case Add, using eval Seq:
safeEval (Add el e2) =
[gasel safeEval el [Bfll

nl B5
[gasg saf eEval e2 [Gfll

QEsH n2 B8 Just (nl + n2)

eval Seq ma

f
[casel = [6fl

a BB f a

MGS 2009 FUN Lecture 3 - p 19148

Exercise 1: Solution

saf eEval Exp -> Maybe I nteger
saf eEval (Add el e2) =

eval Seq (safeEval el)

(\nl -> eval Seq (safeEval e2)
(\n2 -> Just (nl1+n2)))

or
saf eEval Exp -> Maybe Integer
saf eEval (Add el e2) =

saf eEval el ‘eval Seq’ (\nl ->

saf eEval e2 ‘eval Seq’ (\n2 ->

Just (nl + n2)))

MGS 2009: FUN Lecture 3 - p20/48

Aside: Scope Rulesof \-abstractions

The scope rules of A-abstractions are such that
parentheses can be omitted:

saf eEval Exp -> Maybe I nteger

saf eEval (Add el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq’ \n2 ->
Just (nl + n2)

MGS 2009 FUN Lecture 3 - p21/48

Refactored Safe Evaluator (1)

saf eEval Exp -> Maybe I nteger

safeEval (Lit n) = Just n

saf eEval (Add el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq’ \n2 ->
Just (nl + n2)

saf eEval (Sub el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq’ \n2 ->
Just (nl - n2)

Refactored Safe Evaluator (2)

saf eEval (Ml el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq' \n2 ->
Just (nl * n2)

safeEval (Div el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 'eval Seq’ \n2 ->
if n2 ==
t hen Not hi ng
el se Just (nl ‘div' n2)

Inliningeval Seq (1)

saf eEval (Add el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq’ \n2 ->
Just (nl + n2)

saf eEval (Add el e2) =

case (safeEval el) of

Not hi ng -> Not hi ng
Just a -> (\nl -> safeEval e2 ...

Inliningeval Seq (2)

saf eEval (Add el e2) =

case (safeEval el) of

Not hi ng -> Not hi ng
Just nl -> safeEval e2 ‘eval Seq" (\n2 -> ...)

saf eEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just a -> (\n2 ->...) a

MGS 2009: FUN Lecture 3 - p22/48 MGS 2009: FUN Lecture 3 - p25id8

Inliningeval Seq (3)

saf eEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> (Just nl + n2)
Good excercise: verify the other cases.

MGS 2009: FUN Lecture 3 - p2348 MGS 2000: FUN Lecture 3 - p26/dg

Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

» When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

- l.e. failure is an effect , implicitly affecting
subsequent computations.

* Let's generalize and adopt names reflecting
our intentions.

MGS 2009: FUN Lecture 3 - p24i48

MGS 2009: FUN Lecture 3 - p27148

Maybe Viewed as a Computation (2)

Successful computation of a value:

nbReturn :: a -> Maybe a
nbReturn = Just
Sequencing of possibly failing computations:
nbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
nbSeq ma f =
case ma of
Not hi ng -> Not hi ng
Just a ->f a

MGS 2009 FUN Lecture 3 - p28148

Maybe Viewed as a Computation (3)

Failing computation:

nbFail :: Maybe a
nmbFai | = Not hi ng

The Safe Evaluator Revisited

saf eEval :: Exp -> Maybe I nteger
safeEval (Lit n) = nbReturn n
saf eEval (Add el e2) =
saf eEval el ‘nbSeq' \nl ->
saf eEval e2 ‘nmbSeq’ \n2 ->
nmbReturn (nl + n2)

safeEval (Div el e2) =
saf eEval el ‘nbSeq' \nl ->
saf eEval e2 ‘nbSeq’ \n2 ->
if n2 == 0 then nbFail
el se nbReturn (nl ‘div' n2)))

MGS 2009 FUN Lecture 3 - p30148

Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

nunberTree :: Tree a -> Tree Int
nunber Tree t = fst (ntAux t 0)
wher e
ntAux :: Tree a -> Int -> (Tree Int,Int)
nt Aux (Leaf _) n = (Leaf n, n+l)

nt Aux (Node t1 t2) n =
let (t1’, n') = ntAux tl1 n
inlet (t2°, n’) = ntAux t2 n’
in (Node t1' t2', n'")

MGS 2009: FUN Lecture 3 - p31/dg

Observations

 Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

- Itis very easy to pass on the wrong version of
the counter!

Can we do better?

MGS 2009: FUN Lecture 3 - p32148

Stateful Computations (1)

« A stateful computation consumes a state
and returns a result along with a possibly
updated state.

« The following type synonym captures this
idea:
type Sa =1Int -> (a, Int)
(Only I nt state for the sake of simplicity.)
A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.

MGS 2009: FUN Lecture 3 - p33i4g

Stateful Computations (2)

« When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

- |.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)

MGS 2009: FUN Lecture 3 - p34idg,

Stateful Computations (3)

Computation of a value without changing the
state:

sReturn :: a -> S a
sReturn a = \n -> (a, n)
Sequencing of stateful computations:
sSeq :: Sa->(a->Sbh) ->Sb
sSeq sa f =\n ->
let (a, n) =san
inf an

MGS 2009: FUN Lecture 3 - p3siag.

Stateful Computations (4)

Reading and incrementing the state:

slnc :: S Int
slnc =\n -> (n, n + 1)

MGS 2009: FUN Lecture 3 - p36/d8,

Numbering treesrevisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

nunberTree :: Tree a -> Tree Int
nunberTree t = fst (ntAux t 0)
wher e
ntAux :: Tree a -> S (Tree Int)
nt Aux (Leaf _) =
slnc ‘sSeq’ \n -> sReturn (Leaf n)
nt Aux (Node t1 t2) =
ntAux t1 ‘sSeq \tl1' ->
ntAux t2 ‘sSeq’ \t2' ->
sReturn (Node t1' t2')

MGS 2009: FUN Lecture 3 - p37148

Observations

» The “plumbing” has been captured by the
abstractions.
« In particular:
- counter no longer manipulated directly

- no longer any risk of “passing on” the
wrong version of the counter!

MGS 2009: FUN Lecture 3 - p38/48

Comparison of the examples

- Both examples characterized by sequencing
of effectful computations.

- Both examples could be neatly structured by
introducing:
- A type denoting computations
- A function constructing an effect-free
computation of a value
- A function constructing a computation by
sequencing computations

- In fact, both examples are instances of the
general notion of a MONAD.

MGS 2009 FUN Lecture 3 - p39148

Monadsin Functional Programming

A monad is represented by:
« A type constructor
M:: * -> %
M T represents computations of a value of type T.
« A polymorphic function
return :: a -> Ma
for lifting a value to a computation.
« A polymorphic function
(>>=) :: Ma->(a->Mb) ->Mb
for sequencing computations.

MGS 2009: FUN Lecture 3 - p 40143

Exercise2:j oi nand f map

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a->Ma

join:: (M(Ma)) -> Ma

fmap :: (a->b) ->(Ma -> Mb)
j oi n “flattens” a computation, f map “lifts” a
function to map computations to computations.

Define j oi n and f map in terms of >>= (and
ret urn), and >>=in terms of j oi n and f nap.

(>>=) :: Ma->(a->Mb) ->Mb

MGS 2009: FUN Lecture 3 - p4Li48

Exercise 2: Solution

join:: M(Ma) ->Ma
join mMm = nm >>= id

frap :: (a->b) ->Ma ->Mb
fmap f m= m>>=\a -> return (f a)

or.
frep :: (a ->b) ->Ma->Mb
frmap f m= m>>=return . f

(>>=) :: Ma->(a->Mb) ->Mb
m>>=f =join (frap f m

MGS 2009: FUN Leclure 3 - p421a3

Monad laws

Additionally, the following laws must be satisfied:

returnz>>=f = fuz
m>>=return
(m>>= f)>>=¢g = m>>=(v — faz>>=g)

m

l.e., r et ur n is the right and left identity for >>=,
and >>= is associative.

MGS 2009: FUN Lecture 3 - p43/d

Exercise 3: Theldentity Monad

The Identity Monad can be understood as
representing effect-free computations:

type | a = a
1. Provide suitable definitions of r et ur n and
>>=,

2. Verify that the monad laws hold for your
definitions.

]
B
g

Exercise 3: Solution

return :: a->1 a

return = id

(>>=) :: 1l a->(a->1b) ->1b
m>>=f =f m

--or: (>>=) =flip (%)

Simple calculations verify the laws, e.g.:

returnz>>=f ide>>=f
r>>=f

= fux

MGS 2009: FUN Lecture 3 - p.45ids,

Monadsin Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):
« Kleisli triple/triple in extension form: Most
closely related to the >>= version:
A Klesili triple over a category C is a
triple (T,n,_*), where T': |C| — |C],
na:A—TAforAelC|, f*: TA—TB
for f: A—TB.
(Additionally, some laws must be satisfied.)

MGS 2009 FUN Lecture 3 - 46148

Monadsin Category Theory (2)

» Monad/triple in monoid form: More akin to
the j oi n/f map version:
A monad over a category C is a triple
(T,n,), where T : C — C is a functor,
n :ide—T and p : T>-5T are natural
transformations.
(Additionally, some commuting diagrams
must be satisfied.)

MGS 2009: FUN Lecture 3 - pa7i48

Reading

* Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

* Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

* All About Monads.
http://ww. haskel | . org/ al | _about _nopnads

MGS 2009: FUN Lecture 3 - 48148

	A Blessing and a Curse
	Conundrum
	Example: A Compiler Fragment (1)
	Example: A Compiler Fragment (2)
	Example: A Compiler Fragment (3)
	Example: A Compiler Fragment (4)
	Example: A Compiler Fragment (5)
	Answer to Conundrum: Monads (1)
	Answer to Conundrum: Monads (2)
	This Lecture
	Example 1: A Simple Evaluator
	Making the Evaluator Safe (1)
	Making the Evaluator Safe (2)
	Making the Evaluator Safe (3)
	Making the Evaluator Safe (4)
	Any Common Pattern?
	Sequencing Evaluations
	Exercise 1: Refactoring 	exttt {safeEval}
	Exercise 1: Solution
	Aside: Scope Rules of $lambda $-abstractions
	Refactored Safe Evaluator (1)
	Refactored Safe Evaluator (2)
	Inlining 	exttt {evalSeq} ; (1)
	Inlining 	exttt {evalSeq} ; (2)
	Inlining 	exttt {evalSeq} ; (3)
		exttt {Maybe} Viewed as a Computation (1)
		exttt {Maybe} Viewed as a Computation (2)
		exttt {Maybe} Viewed as a Computation (3)
	The Safe Evaluator Revisited
	Example 2: Numbering Trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: 	exttt {join} and 	exttt {fmap}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Monads in Category Theory (1)
	Monads in Category Theory (2)
	Reading

