Henrik Nilsson

University of Nottingham, UK

_ oo PN et mps

This Lecture

« Monads in Haskell
« Some standard monads
« Combining effects: monad transformers

MGS 2009: FUN Lecture 4 —p.2/39

Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class:

cl ass Monad m where
return :: a ->ma
(>>=) :: ma->(a->mb) ->mb

Allows names of the common functions to be
overloaded and sharing of derived definitions.

MGS 2009: FUN Lecture 4 - p.3/39

The Maybe Monad in Haskell

i nstance Monad Maybe where
-- return :: a -> Maybe a
return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)
-- -> Maybe b

Not hing >>= _ = Not hi ng

(Just x) >>=f =1 x

_ oS 0 et

Exercise 1: A State Monad in Haskell Monad-specific Operations (1)

Haskell 98 does not permit type synonyms to be To be useful, monads need to be equipped with
instances of classes. Hence we have to define a additional operations specific to the effects in
new type: question. For example:

newype Sa =S (Int -> (a, Int)) fail :: String -> Maybe a

fail s = Nothing
unS :: S a->(Int -> (a, Int))

unS (S f) = f catch :: Maybe a -> Maybe a -> Maybe a
Provide a Monad instance for S. m ‘catch® ng =
case nil of
Just _ ->nl
Not hi ng -> n2
Exercise 1: Solution Monad-specific Operations (2)
instance Monad S where Typical operations on a state monad:

return a =S (\s -> (a, s)) set :: Int -> S ()

m>>=f =S $\s -> set a =S (_->((), a))

let (a,) = unS ms

et :: S iInt
inunS (f a) s’ J

get =S (\s -> (s, 9))
Moreover, need to “run” a computation. E.qg.:

runS :: S a->a
runS m= fst (unS mO0)

_ oz PN et mp e _ oS 200 e e

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do
a <- exrp
b <- ewp,
return exps

IS syntactic sugar for
exp, >>= \a ->
exp, >>= \b ->
return ezrp,

MGS 2009: FUN Lecture 4 - p.9/39

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

€rpy
€Ipgy
return exps

IS syntactic sugar for

exp; >>= _ ->
exp, >>= _ ->
return exp,

MGS 2009: FUN Lecture 4 — p.10/39

The do-notation (3)

A | et -construct is also provided:

do
let a = exp,
b = exp,
return expg

IS equivalent to

do
a <- return ezp;
b <- return ezp,
return expg

Numbering Trees in do-notation

nunberTree :: Tree a -> Tree Int
nunber Tree t = runS (nt Aux t)
wher e
ntAux :: Tree a -> S (Tree Int)
nt Aux (Leaf _) = do
n <- get
set (n + 1)
return (Leaf n)
nt Aux (Node t1 t2) = do
t1l" <- ntAux t1l
t2" <- ntAux t2
return (Node t1l t2')

MGS 2009: FUN Lecture 4 - p.11/39

MGS 2009: FUN Lecture 4 — p.12/39

The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, ent er Var can be
turned from this:

enterVar :: Id ->Int -> Type -> Env
-> Either Env ErrorMs

into this:

enterVarD :: Id -> Int -> Type -> Env
-> D Env

and then i dent Def s from this ...

The Compiler Fragment Revisited (2)

identDefs | env [] = ([], env, [])
identDefs | env ((i,t,e) : ds) =

((i,t,e’) : ds’, env'’, nel++tns2++ns3)
wher e
(e, mel) = identAux | env e
(env’', nme2) =
case enterVar i | t env of

Left env’ -> (env’', [])
Right m -> (env, [m)
(ds’, env'', ne3) =
identDefs | env’ ds

The Compiler Fragment Revisited (3)

into this:

identDefsD | env [] = return ([], env)
identDefsD | env ((i,t,e) : ds) = do
e’ <- identAuxD | env e
env’ <- enterVarDi | t env
(ds’, env’'’') <- identDefsD | env’' ds
return ((i,t,e’) : ds', env'’)

(Suffix D just to remind us the types have
changed.)

The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs | env [] = ([], env)
identDefs | env ((i,t,e) : ds) =
((i,t,e’) : ds', env'’)

wher e
e’ = identAux | env e
env’ = enterVar i | t env

identDefs | env' ds

(ds’, env'’)

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!

The List Monad The Haskell IO Monad

Computation with many possible results,

“nondeterminism” In Haskell, 10 is handled through the 10 monad.

IO is abstract ! Conceptually:

i nstance Monad [] where
newype 10a =10 (Wrld -> (a, Wrld))

return a = [a]
m>>=f = concat (map f m Some operations:
fail s =] put Char 1 Char -> 10 ()
_ _ put Str :: String -> 10 ()
Example: Result: put StrlLn c: String -> 10 ()
x <- [1, 2] [(1,7a),(1,"b"), get Char ;1 10 Char
y <-['a, "b"] (2,7a),(2,"b")] get Li ne :: 10 String
return (x,y) getContents :: String

The Reader Monad Monad Transformers (1)

Computation in an environment: What if we need to support more than one type

2
i nstance Monad ((->) e) where of effect”

return a = const a For example: State and Error/Partiality?
m>=f =\e ->f (me) e . .
We could implement a suitable monad from

getEnv :: ((->) e) e scratch:

getEnv = id newtype SE s a = SE (s -> Maybe (a, s))

_ oz P e pree _ oS p00m e A0

Monad Transformers (2) Monad Transformers in Haskell (1)

However: « A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:

T (* -> %) -> (% ->)

+ Additionally, a monad transformer adds
computational effects. A mapping | i ft from
computations in the underlying monad to
computations in the transformed monad is
needed:

lift :: Ma->T Ma

_ o R0 PN et mpd _

» Not always obvious how: e.g., should the
combination of state and error have been

newtype SE s a = SE (s -> (Maybe a, s))
- Duplication of effort: similar patterns related

to specific effects are going to be repeated
over and over in the various combinations.

Monad Transformers (3) Monad Transformers in Haskell (2)

Monad Transformers can help: « These requirements are captured by the
following (multi-parameter) type class:
class (Monad m Monad (t m)
=> MonadTransformer t m where
lift :: ma->t ma

-« Amonad transformer transforms a monad
by adding support for an additional effect.

« A library of monad transformers can be
developed, each adding a specific effect
(state, error, .. .), allowing the programmer to
mix and match.

« A form of aspect-oriented programming.

_ oz P et mpad _ o0 e A

Classes for Specific Effects The Error Monad Transformer (1)

newype ET ma = ET (m (Maybe a))

A monad transformer adds specific effects to any UnET (ET m) = m
monad. Thus the effect-specific operations
needs to be overloaded. For example: Any monad transformed by ET is a monad:
class Monad m => E m where i nstance Monad m => Monad (ET m) where
eFail :: ma return a = ET (return (Just a))
eHandle :: ma ->ma -> ma
m>>=f = ET $ do
class Monad m=> S ms | m-> s where ma <- unET m
sSet :: s ->m() case ma of
sGet :: ms Not hi ng -> return Not hi ng

Just a -> unET (f a)

_ o R0 PN et mpad _ oS 00 e bR

The Identity Monad The Error Monad Transformer (2)

We are going to construct monads by successive We need the ability to run transformed monads:
transformations of the identity monad:

rungET :: Monad m=> ET ma -> ma
newtype | a =1 a runET etm = do
unl (I a) = a ma <- unET etm
case na of
i nstance Monad | where Just a -> return a

return a =1 a
m>>=f =1f (unl m

ET is a monad transformer:

i nstance Monad m =>
runl c: | a -> a MonadTr ansf ormer ET m where
runl = unl lift m=ET (m>>=\a -> return (Just a))

_ oz P et p e _ oS 0o e e

The Error Monad Transformer (3)

Exercise 2: Running Transf. Monads

Any monad transformed by ET is an instance of E: Let

i nstance Monad m=> E (ET nm) where
eFail = ET (return Nothing)
mL ‘eHandl e’ n2 = ET $ do
ma <- unkET nil

case ma of
Not hi ng -> unET nR
Just _ ->return ma

The Error Monad Transformer (4)

ex2 = eFail ‘eHandl e' return 1

1. Suggest a possible type for ex2.
(Assumel :: Int))

2. Given your type, use the appropriate
combination of “run functions” to run ex2.

e _ oS0 e A mp e

Exercise 2: Solution

A state monad transformed by ET is a state ex2 11 ET I Int
monad: ex2 = eFail ‘eHandle' return 1
instance Sms => S (ET m) s where
. ex2result :: Int
sSet s = lift (sSet s)
_ ex2result = runl (runkET ex2)
sGet =1lift sCet

The State Monad Transformer (1)

newtype ST s ma = ST (s -> m(a, S))
unST (ST m = m

Any monad transformed by ST is a monad:

i nstance Monad m => Monad (ST s n) where
return a = ST (\s -> return (a, s))

m>>=f = ST $ \s -> do
(a, s') <- unST ms
unST (f a) s’

©

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m=> ST s ma ->s -> ma
runST stf sO = do

(a,) <- unST stf sO

return a

ST is a monad transformer:

i nstance Monad m =>
MonadTr ansformer (ST s) m where
lift m= ST (\s -> m>>=\a ->
return (a, s))

_ o R0 P e p s

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

i nstance Monad m=> S (ST s n) s where
sSet s = ST (_ ->return ((), s))
sGet = ST (\s ->return (s, s))

An error monad transformed by ST is an error
monad:

instance E m=> E (ST s m) where
eFail =1ift eFai
m ‘eHandle’ n2 = ST $ \s ->
unST mL s ‘eHandl e’ unST nR2 s

°

Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET 1)) Int
ex3a = (sSet 42 >> eFail) ‘eHandl e’ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int 1)) Int
ex3b = (sSet 42 >> eFail) ‘eHandle' sGet
What is

runl (runET (runST ex3a 0))
runl (runST (runET ex3b) 0)

MGS 2009: FUN Lecture 4 — p.36/39

* Nick Benton, John Hughes, Eugenio Moggi. Monads

runl (runET (runST ex3a 0)) = 0 and Effects. In International Summer School on
runl (runST (runET ex3b) 0) = 42 Applied Semantics 2000, Caminha, Portugal, 2000.
Why? Because: * Sheng Liang, Paul Hudak, Mark Jones. Monad
Transformers and Modular Interpreters. In Proceedings
ST s (ET1) a = s ->(ETI) (a, s) of the 22nd ACM Symposium on Principles of
2 s -> 1| (Maybe (a, s)) Programming Languages (POPL95), January 1995,
~ s -> Maybe (a, s) San Francisco, California

112

ET (ST s |) a (ST s 1) (Maybe a)
s ->1 (Maybe a, s)
s -> (Maybe a, s)

o R0 PN et mp s _ oS 00 e Ao

I 111

Exercise 4: Alternative ST?

To think about.

Could ST have been defined in some other way,
e.g.

newt ype ST s ma
or perhaps

ST (m(s -> (a, s)))

ST (s -> (ma, s))

newtype ST s ma

MGS 2009: FUN Lecture 4 — p.38/39

	This Lecture
	Monads in Haskell
	The 	exttt {Maybe} Monad in Haskell
	Exercise 1: A State Monad in Haskell
	Exercise 1: Solution
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering Trees in 	exttt {do}-notation
	The Compiler Fragment Revisited (1)
	The Compiler Fragment Revisited (2)
	The Compiler Fragment Revisited (3)
	The Compiler Fragment Revisited (4)
	The List Monad
	The Reader Monad
	The Haskell IO Monad
	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 2: Running Transf. Monads
	Exercise 2: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 3: Effect Ordering
	Exercise 3: Solution
	Exercise 4: Alternative 	exttt {ST}?
	Reading

