Imperative vs. Declarative (1)

- **Imperative Languages**:
 - Implicit state.
 - Computation essentially a sequence of side-effecting actions.
 - Examples: Procedural and OO languages
Imperative vs. Declarative (1)

- **Imperative Languages**:
 - Implicit state.
 - Computation essentially a sequence of side-effecting actions.
 - Examples: Procedural and OO languages

- **Declarative Languages** (Lloyd 1994):
 - *No* implicit state.
 - A program can be regarded as a theory.
 - Computation can be seen as deduction from this theory.
 - Examples: Logic and Functional Languages.
Imperative vs. Declarative (2)

Another perspective:

- \textit{Algorithm} = \textit{Logic} + \textit{Control}
Imperative vs. Declarative (2)

Another perspective:

- *Algorithm = Logic + Control*
- Declarative programming emphasises the logic ("what") rather than the control ("how").
Another perspective:

- **Algorithm = Logic + Control**

- Declarative programming emphasises the logic (“what”) rather than the control (“how”).

- Strategy needed for providing the “how”:
 - Resolution (logic programming languages)
 - Lazy evaluation (some functional and logic programming languages)
 - (Lazy) narrowing: (functional logic programming languages)
Declarative languages for practical use tend to be only *weakly declarative*; i.e., not totally free of control aspects. For example:
Declarative languages for practical use tend to be only *weakly declarative*; i.e., not totally free of control aspects. For example:

- Equations in functional languages are directed.
Declarative languages for practical use tend to be only weakly declarative; i.e., not totally free of control aspects. For example:

- Equations in functional languages are directed.
- Order of patterns often matters for pattern matching.
Declarative languages for practical use tend to be only *weakly declarative*; i.e., not totally free of control aspects. For example:

- Equations in functional languages are directed.
- Order of patterns often matters for pattern matching.
- Constructs for taking control over the order of evaluation. (E.g. `cut` in Prolog, `seq` in Haskell.)
Relinquishing Control

Theme of this lecture: *relinquishing control by exploiting lazy evaluation*.

- Evaluation orders
- Strict vs. Non-strict semantics
- Lazy evaluation
- Applications of lazy evaluation:
 - Programming with infinite structures
 - Circular programming
 - Dynamic programming
 - Attribute grammars
Consider:

\[
\text{sqr } x = x \ast x \\
\text{dbl } x = x + x \\
\text{main} = \text{sqr } (\text{dbl } (2 + 3))
\]

Roughly, any expression that can be evaluated or reduced by using the equations as rewrite rules is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of \text{main} are: 2 + 3

\[
\text{dbl } (2 + 3) \\
\text{sqr } (\text{dbl } (2 + 3))
\]
Thus, in general, many possible reduction orders. Innermost, leftmost redex first is called \textbf{Applicative Order Reduction} (AOR). Recall:

\begin{align*}
\text{sqr } x &= x \ast x \\
\text{dbl } x &= x + x \\
\text{main} &= \text{sqr } (\text{dbl } (2 + 3))
\end{align*}

Starting from \text{main}:

\begin{align*}
\text{main} &\Rightarrow \text{sqr } (\text{dbl } (2 + 3)) \Rightarrow \text{sqr } (\text{dbl } 5) \\
&\Rightarrow \text{sqr } (5 + 5) \Rightarrow \text{sqr } 10 \Rightarrow 10 \ast 10 \Rightarrow 100
\end{align*}

\textbf{Call-By-Value} (CBV) = AOR except no evaluation under λ (inside function bodies).
Evaluation Orders (3)

Outermost, leftmost redex first is called **Normal Order Reduction** (NOR):

\[
\text{main} \Rightarrow \text{sqr}\ (\text{dbl}\ (2 + 3)) \\
\Rightarrow \text{dbl}\ (2 + 3) \ast \text{dbl}\ (2 + 3) \\
\Rightarrow ((2 + 3) + (2 + 3)) \ast \text{dbl}\ (2 + 3) \\
\Rightarrow (5 + (2 + 3)) \ast \text{dbl}\ (2 + 3) \\
\Rightarrow (5 + 5) \ast \text{dbl}\ (2 + 3) \Rightarrow 10 \ast \text{dbl}\ (2 + 3) \\
\Rightarrow \ldots \Rightarrow 10 \ast 10 \Rightarrow 100
\]

(Applications of arithmetic operations only considered redexes once arguments are numbers.) **Call-By-Name** (CBN) = NOR except no evaluation under \(\lambda\).
Why NOR or CBN? (1)

NOR and CBN seem rather inefficient. Any use?

- Best possible termination properties.

A pure functional languages is just the λ-calculus in disguise. Two central theorems:

- Church-Rosser Theorem I:
 No term has more than one normal form.

- Church-Rosser Theorem II:
 If a term has a normal form, then it can be found through NOR.
Why NOR or CBN? (2)

- More expressive power; e.g.:
 - “Infinite” data structures
 - Circular programming
 - Custom control constructs (great for EDSLs)
Why NOR or CBN? (2)

- More expressive power; e.g.:
 - “Infinite” data structures
 - Circular programming
 - Custom control constructs (great for EDSLs)

- More declarative code as control aspects (order of evaluation) left implicit.
Why NOR or CBN? (3)

- More reuse. E.g. consider:

\[
\text{any} :: (a \to \text{Bool}) \to [a] \to \text{Bool}
\]
\[
\text{any } p = \text{or . map } p
\]

Under AOR/CBV, we would have to inline all functions to avoid doing too much work:

\[
\text{any} :: (a \to \text{Bool}) \to [a] \to \text{Bool}
\]
\[
\text{any } p [] = \text{False}
\]
\[
\text{any } p (y:ys) = y \text{ || any } p \text{ ps}
\]

(Assume \(\text{||}\) has “short-circuit” semantics.)

No reuse.

(See references for in-depth discussion.)
Consider:

\[
\begin{align*}
 f \ x &= 1 \\
 g \ x &= g \ x \\
 \text{main} &= f \ (g \ 0)
\end{align*}
\]

Attempt to evaluate \text{main} using both AOR and NOR. Which order is the more efficient in this case? (Count the number of reduction steps to normal form.)
Strict vs. Non-strict Semantics (1)

- \(\perp \), or “bottom”, the *undefined value*, representing *errors* and *non-termination*.

- A function \(f \) is *strict* iff:

\[
f \perp = \perp
\]

For example, \(+ \) is strict in both its arguments:

\[
(0/0) + 1 = \perp + 1 = \perp
\]
\[
1 + (0/0) = 1 + \perp = \perp
\]
Again, consider:

\[f(x) = 1 \]
\[g(x) = g(x) \]

What is the value of \(f(0/0) \)? Or of \(f(g\ 0) \)?

- **AOR**: \(f(0/0) \Rightarrow \bot; \ f(g\ 0) \Rightarrow \bot \)

 Conceptually, \(f \bot = \bot \); i.e., \(f \) is strict.

- **NOR**: \(f(0/0) \Rightarrow 1; \ f(g\ 0) \Rightarrow 1 \)

 Conceptually, \(f \bot = 1 \); i.e., \(f \) is non-strict.

Thus, NOR results in non-strict semantics.
Lazy Evaluation (1)

Lazy evaluation or Call-by-Need is a technique for implementing CBN more efficiently:
Lazy evaluation or Call-by-Need is a technique for implementing CBN more efficiently:

- A redex is evaluated only if needed.
Lazy Evaluation (1)

Lazy evaluation or Call-by-Need is a technique for implementing CBN more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.
Lazy evaluation or Call-by-Need is a technique for implementing CBN more efficiently:

- A redex is evaluated *only if needed*.
- *Sharing* employed to avoid duplicating redexes.
- Once evaluated, a redex is *updated* with the result to avoid evaluating it more than once.
Lazy Evaluation (1)

Lazy evaluation or Call-by-Need is a technique for implementing CBN more efficiently:

- A redex is evaluated *only if needed*.
- *Sharing* employed to avoid duplicating redexes.
- Once evaluated, a redex is *updated* with the result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex is evaluated *at most once*.
Lazy Evaluation (2)

Recall:

\[
\begin{align*}
\text{sqr } x &= x \times x \\
\text{dbl } x &= x + x \\
\text{main } &= \\
&\quad \text{sqr } (\text{dbl } (2+3))
\end{align*}
\]
Recall:

\[
\begin{align*}
\text{sqr} \ x & = x \times x \\
\text{dbl} \ x & = x + x \\
\text{main} & = \text{sqr} \ (\text{dbl} \ (2+3))
\end{align*}
\]
Lazy Evaluation (2)

Recall:

\[
\begin{align*}
sqr\ x &= x \times x \\
\text{dbl}\ x &= x + x \\
\text{main} &= \\
sqr\ (\text{dbl}\ (2+3))
\end{align*}
\]

\[
\begin{align*}
sqr\ (\text{dbl}\ (2 + 3)) &\Rightarrow \text{dbl}\ (2 + 3) \\
&\Rightarrow (2 + 3) + (\cdot) \\
&\Rightarrow \cdot \cdot
\end{align*}
\]
Recall:

\[\text{sqr} \ x = x \times x \]

\[\text{dbl} \ x = x + x \]

main =

\[\text{sqr} \ (\text{dbl} \ (2+3)) \]
Lazy Evaluation (2)

Recall:

\[
\begin{align*}
\text{sqr } x &= x \ast x \\
\text{dbl } x &= x + x \\
\text{main } &= \text{sqr } (\text{dbl } (2+3))
\end{align*}
\]

\[
\begin{align*}
\text{sqr } (\text{dbl } (2 + 3)) &\Rightarrow \text{dbl } (2 + 3) \\
\Rightarrow (2 + 3) + (\ast (\cdot)) \\
\Rightarrow (5 + (\ast (\cdot))) \\
\Rightarrow 10 \ast (\cdot)
\end{align*}
\]
Recall:

\[\text{sqr } x = x \times x \]
\[\text{dbl } x = x + x \]
\[
\text{main} = \text{sqr } (\text{dbl } (2 + 3))
\]

\[
\Rightarrow \text{sqr } (\text{dbl } (2 + 3))
\]
\[\Rightarrow \text{dbl } (2 + 3) \times (\cdot)\]
\[\Rightarrow (2 + 3) + (\cdot) \times (\cdot)\]
\[\Rightarrow (5 + (\cdot)) \times (\cdot)\]
\[\Rightarrow 10 \times (\cdot)\]
\[\Rightarrow 100\]
Exercise 2

Evaluate `main` using AOR, NOR, and lazy evaluation:

\[
\begin{align*}
 f \; x \; y \; z &= x \times z \\
 g \; x &= f \; (x \times x) \; (x \times 2) \; x \\
 \text{main} &= g \; (1 + 2)
\end{align*}
\]

(Only consider an application of an arithmetic operator a redex once the arguments are numbers.)

How many reduction steps in each case?
Exercise 2

Evaluate `main` using AOR, NOR, and lazy evaluation:

\[
\begin{align*}
 f(x, y, z) &= x * z \\
 g(x) &= f(x * x, x * 2, x) \\
 main &= g(1 + 2)
\end{align*}
\]

(Only consider an application of an arithmetic operator a redex once the arguments are numbers.)

How many reduction steps in each case?

Answer: 7, 8, 6 respectively
Infinite Data Structures (1)

```haskell
take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)
nats = from 0

main = take 5 nats
```
Infinite Data Structures (2)

main

nats
Infinite Data Structures (2)

```
main ⇒<sup>1</sup> take 5 (•)
nats
```
Infinite Data Structures (2)

\[
\text{main} \xrightarrow{1} \text{take 5} (\bullet)
\]

\[
\text{nats} \xrightarrow{2} \text{from 0}
\]
Infinite Data Structures (2)

\[\text{main} \Rightarrow^{1} \text{take 5 (\bullet)} \]

\[\text{nats} \Rightarrow^{2} \text{from 0} \Rightarrow^{3} 0 : \text{from 1} \]
Infinite Data Structures (2)

main \Rightarrow^1 take 5 (●) \Rightarrow^4 0:take 4 (●)

nats \Rightarrow^2 from 0 \Rightarrow^3 0:from 1
Infinite Data Structures (2)

\[
\text{main} \Rightarrow^1 \text{take 5 (•)} \Rightarrow^4 0: \text{take 4 (•)}
\]

\[
\text{nats} \Rightarrow^2 \text{from 0} \Rightarrow^3 0: \text{from 1}
\]

\[
\Rightarrow^5 0:1: \text{from 2}
\]
Infinite Data Structures (2)

\[\text{main} \Rightarrow^{1} \text{take 5 (●)} \Rightarrow^{4} 0: \text{take 4 (●)} \]

\[\Rightarrow^{6} 0:1: \text{take 3 (●)} \]

\[\text{nats} \Rightarrow^{2} \text{from 0} \Rightarrow^{3} 0: \text{from 1} \]

\[\Rightarrow^{5} 0:1: \text{from 2} \]
Infinite Data Structures (2)

\[
\text{main } \Rightarrow^1 \text{ take 5 (●) } \Rightarrow^4 0 : \text{take 4 (●)} \\
\Rightarrow^6 0 : 1 : \text{take 3 (●)}
\]

\[
\text{nats } \Rightarrow^2 \text{ from 0 } \Rightarrow^3 0 : \text{from 1} \\
\Rightarrow^5 0 : 1 : \text{from 2} \Rightarrow^7 \ldots
\]
Infinite Data Structures (2)

\[\text{nats} \xrightarrow{2} \text{from 0} \xrightarrow{3} 0: \text{from 1} \]
\[\xrightarrow{5} 0:1: \text{from 2} \xrightarrow{7} \ldots \]

\[\text{main} \xrightarrow{1} \text{take 5 (●)} \xrightarrow{4} 0: \text{take 4 (●)} \]
\[\xrightarrow{6} 0:1: \text{take 3 (●)} \xrightarrow{8} \ldots \]
Infinite Data Structures (2)

```
main  ⇒^1^ take 5  (●)   ⇒^4^ 0:take 4  (●)
        ⇒^6^ 0:1:take 3  (●)   ⇒^8^ ...
```

```
nats  ⇒^2^ from 0   ⇒^3^ 0:from 1
        ⇒^5^ 0:1:from 2   ⇒^7^ ...   ⇒^0^:1:2:3:4:from 5
```
Infinite Data Structures (2)

\[
\text{main} \Rightarrow^1 \text{take 5 (•)} \Rightarrow^4 0: \text{take 4 (•)}
\]
\[
\Rightarrow^6 0:1: \text{take 3 (•)} \Rightarrow^8 \ldots
\]
\[
\Rightarrow 0:1:2:3:4: \text{take 0 (•)}
\]

\[
\text{nats} \Rightarrow^2 \text{from 0} \Rightarrow^3 0: \text{from 1}
\]
\[
\Rightarrow^5 0:1: \text{from 2} \Rightarrow^7 \ldots \Rightarrow 0:1:2:3:4: \text{from 5}
\]
Infinite Data Structures (2)

\[
\begin{align*}
\text{nats} & \Rightarrow^2 \text{from 0} \Rightarrow^3 0 : \text{from 1} \\
& \Rightarrow^5 0 : 1 : \text{from 2} \Rightarrow^7 \ldots \\
& \Rightarrow 0 : 1 : 2 : 3 : 4 : \text{from 5} \\
\end{align*}
\]

\[
\begin{align*}
\text{main} & \Rightarrow^1 \text{take 5 } (\bullet) \Rightarrow^4 0 : \text{take 4 } (\bullet) \\
& \Rightarrow^6 0 : 1 : \text{take 3 } (\bullet) \Rightarrow^8 \ldots \\
& \Rightarrow 0 : 1 : 2 : 3 : 4 : \text{take 0 } (\bullet) \Rightarrow [0, 1, 2, 3, 4]
\end{align*}
\]
Circular Data Structures (2)

\[
\text{take } 0 \; \text{xs} = []
\]

\[
\text{take } n \; [] = []
\]

\[
\text{take } n \; (x:xs) = x : \text{take } (n-1) \; xs
\]

\[
\text{ones} = 1 : \text{ones}
\]

\[
\text{main} = \text{take } 5 \; \text{ones}
\]
Circular Data Structures (2)

main

ones
Circular Data Structures (2)

\[
\text{main} \Rightarrow^1 \text{take 5} (\cdots)
\]
Circular Data Structures (2)

main \Rightarrow^1 \text{take 5 (•)}

ones \Rightarrow^2 1 : •
Circular Data Structures (2)

\[
\text{main} \Rightarrow^1 \text{take 5 (●)} \Rightarrow^3 1:\text{take 4 (●)}
\]
Circular Data Structures (2)

main ⇒¹ take 5 (●) ⇒³ 1:take 4 (●)

⇒⁴ 1:1:take 3 (●)

ones ⇒² 1 : ●

MGS 2012: FUN Lecture 1 – p.21/47
Circular Data Structures (2)

\[
\begin{align*}
\text{main} & \Rightarrow^1 \text{take 5 } (\bullet) & \Rightarrow^3 1: \text{take 4 } (\bullet) \\
& \Rightarrow^4 1:1: \text{take 3 } (\bullet) & \Rightarrow^5 \ldots \\
\text{ones} & \Rightarrow^2 1 : \bullet \\
\end{align*}
\]
Circular Data Structures (2)

\[\text{main} \Rightarrow^1 \text{take 5} \quad \Rightarrow^3 1:\text{take 4} \]
\[\Rightarrow^4 1:1:\text{take 3} \quad \Rightarrow^5 \ldots \]
\[\Rightarrow 1:1:1:1:1:\text{take 0} \]

\[\text{ones} \Rightarrow^2 1 : \bullet \]
Circular Data Structures (2)

\[
\text{main} \Rightarrow^1 \text{take 5 (•)} \Rightarrow^3 1:\text{take 4 (•)} \\
\Rightarrow^4 1:1:\text{take 3 (•)} \Rightarrow^5 \ldots \\
\Rightarrow 1:1:1:1:1:\text{take 0 (•)} \Rightarrow [1,1,1,1,1,1]
\]
Exercise 3

Given the following tree type

```haskell
data Tree = Empty
          | Node Tree Int Tree
```

define:

- An infinite tree where every node is labelled by 1.
- An infinite tree where every node is labelled by its depth from the rote node.
Exercise 3: Solution

treeOnes = Node treeOnes 1 treeOnes

treeFrom n = Node (treeFrom (n + 1)) n (treeFrom (n + 1))

treeDepths = treeFrom 0
Circular Programming (1)

A type of non-empty trees:

```haskell
data Tree = Leaf Int | Node Tree Tree
```
Circular Programming (1)

A type of non-empty trees:

```haskell
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the smallest integer in that tree.
Circular Programming (1)

A type of non-empty trees:

```haskell
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the smallest integer in that tree.

How many passes over the tree are needed?
Circular Programming (1)

A type of non-empty trees:

```
  data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the \textit{smallest} integer in that tree.

How many passes over the tree are needed?

\textbf{One!}
Circular Programming (2)

Write a function that replaces all leaf integers by a given integer, and returns the new tree along with the smallest integer of the given tree:

\[
fmr :: \text{Int} \rightarrow \text{Tree} \rightarrow (\text{Tree}, \text{Int})
\]

\[
fmr m \ (\text{Leaf } i) = (\text{Leaf } m, i)
\]

\[
fmr m \ (\text{Node } tl \ tr) =
\]

\[
(\text{Node } tl' \ tr', \text{min } ml \ mr)
\]

where

\[
(tl', ml) = fmr m \ tl
\]

\[
(tr', mr) = fmr m \ tr
\]
Circular Programming (3)

For a given tree t, the desired tree is now obtained as the solution to the equation:

$$(t', m) = \text{fmr} \ m \ t$$

Thus:

$$\text{findMinReplace} \ t = t'$$

where

$$(t', m) = \text{fmr} \ m \ t$$

Intuitively, this works because fmr can compute its result without needing to know the value of m.
Circular Programming (4)

Operational view:

\[\text{fmr } (\text{snd } \cdot) = (\cdot, \cdot) \]

\[\min (\min 3 1) 2 \]
A Simple Spreadsheet Evaluator

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
1 & c3 + c2 & \\
2 & a3 \times b2 & 2 \ a2 + b2 \\
3 & 7 & a2 + a3 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
1 & 37 & \\
2 & 14 & 2 \ 16 \\
3 & 7 & 21 \\
\end{array}
\]

\[
r = \text{array} \ (\text{bounds} \ s) \\
\[\left[(i,j), \ \text{eval} \ r \ (s!(i,j)) \right] \\
\mid (i,j) \leftarrow \text{indices} \ s \ \\
\]

The evaluated sheet is again simply the solution to the stated equation. No need to worry about evaluation order. Any caveats?
Breadth-first Numbering (1)

Consider the problem of numbering a possibly infinitely deep tree in breadth-first order:

```
1  2  3
 / \ / \  /   /
4   5 6  7   10
 / \  \  /   /   /
8 9   11 12 13 14
```
Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J. Gibbons (1992), but the presentation differs.

Consider the following tree type:

```haskell
data Tree a = Empty
           | Node (Tree a) a (Tree a)
```

Define:

- `width t i` The width of a tree `t` at level `i` (0 origin).
- `label t i j` The `j`th label at level `i` of a tree `t` (0 origin).
Breadth-first Numbering (3)

The following system of equations defines breadth-first numbering:

\begin{align*}
\text{label } t \ 0 \ 0 &= 1 \\
\text{label } t \ (i + 1) \ 0 &= \text{label } t \ i \ 0 + \text{width } t \ i \\
\text{label } t \ i \ (j + 1) &= \text{label } t \ i \ j + 1
\end{align*}

Note that \text{label } t \ i \ 0 is defined for \textit{all} levels \(i\) (as long as the widths of all tree levels are finite).
Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:
Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

- **Streams** (infinite lists) of labels are used as a *mediating data structure* to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.
Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

- **Streams** (infinite lists) of labels are used as a *mediating data structure* to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.

- Idea: the tree numbering function for a subtree takes a stream of labels for the *first node* at each level, and returns a stream of labels for the *node after the last node* at each level.
As there manifestly are *no cyclic dependences* among the equations, we can entrust the details of solving them to the lazy evaluation machinery in the safe knowledge that a solution will be found.
Breadth-first Numbering (6)

\[
\text{bfn} :: \text{Tree a} \rightarrow \text{Tree Integer}
\]

\[
bfn \ t = t'
\where
\begin{align*}
(n, t') &= \text{bfnAux} (1 : n) \ t \\
\end{align*}
\]

\[
\text{bfnAux} :: \text{[Integer]} \rightarrow \text{Tree a} \\
\rightarrow ([\text{Integer}], \text{Tree Integer})
\]

\[
bfnAux \ ns \ \text{Empty} = (n, \text{Empty})
\]

\[
bfnAux \ (n : ns) \ (\text{Node} \ tl \ _ \ tr) = ((n + 1) : ns'', \text{Node} \ tl' \ n \ tr')
\]

\[
\text{where}
\begin{align*}
(n', t') &= \text{bfnAux} ns tl \\
(ns'', tr') &= \text{bfnAux} ns' tr
\end{align*}
\]
Breadth-first Numbering (7)
Breadth-first Numbering (8)
Dynamic Programming

Dynamic Programming:

- Create a *table* of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us from having to worry about finding a suitable evaluation order.
The Triangulation Problem (1)

Select a set of *chords* that divides a convex polygon into triangles such that:

- no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal length.

See Aho, Hopcroft, Ullman (1983) for details.
The Triangulation Problem (2)
The Triangulation Problem (3)

- Let S_{is} denote the subproblem of size s starting at vertex v_i of finding the minimum triangulation of the polygon $v_i, v_{i+1}, \ldots, v_{i+s-1}$ (counting modulo the number of vertices).
- Subproblems of size less than 4 are trivial.
- Solving S_{is} is done by solving $S_{i,k+1}$ and $S_{i+k,s-k}$ for all k, $1 \leq k \leq s - 2$
- The obvious recursive formulation results in 3^{s-4} (non-trivial) calls.
- But for $n \geq 4$ vertices there are only $n(n - 3)$ non-trivial subproblems!
The Triangulation Problem (4)
The Triangulation Problem (5)

• Let C_{is} denote the minimal triangulation cost of S_{is}.

• Let $D(v_p, v_q)$ denote the length of a chord between v_p and v_q (length is 0 for non-chords; i.e. adjacent v_p and v_q).

• For $s \geq 4$:

$$C_{is} = \min_{k \in [1, s-2]} \left\{ \begin{array}{c} C_{i,k+1} + C_{i+k,s-k} \\ + D(v_i, v_{i+k}) + D(v_{i+k}, v_{i+s-1}) \end{array} \right\}$$

• For $s < 4$, $S_{is} = 0$.
The Triangulation Problem (6)

These equations can be transliterated straight into Haskell:

```haskell
triCost :: Polygon -> Double
triCost p = cost!(0,n) where
  cost = array ((0,0), (n-1,n))
    ([ ((i,s),
        minimum [ cost!(i, k+1)
                  + cost!((i+k) `mod` n, s-k)
                  + dist p i ((i+k) `mod` n)
                  + dist p ((i+k) `mod` n)
                  ((i+s-1) `mod` n)
          | k <- [1..s-2] ])
     | i <- [0..n-1], s <- [4..n] ] ++
    [ ((i,s), 0.0)
     | i <- [0..n-1], s <- [0..3] ])
  n = snd (bounds b) + 1
```
Lazy evaluation is also very useful for evaluation of **Attribute Grammars**:

- The attribution function is defined recursively over the tree:
 - takes inherited attributes as extra arguments;
 - returns a tuple of all synthesised attributes.

- As long as there exists *some* possible attribution order, lazy evaluation will take care of the attribute evaluation.
The earlier examples on Circular Programming and Breadth-first Numbering can be seen as instances of this idea.
Reading (1)

• Lennart Augustsson. More Points for Lazy Evaluation. 2 May 2011.

 http://augustss.blogspot.co.uk/2011/05/more-points-for-lazy-evaluation-in.html
Reading (2)

