A Blessing and a Curse

- The **BIG** advantage of **pure** functional programming is “everything is explicit;” i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.
- The **BIG** problem with **pure** functional programming is “everything is explicit.” Can add a lot of clutter, make it hard to maintain code.

Conundrum

“**Shall I be pure or impure?**” (Wadler, 1992)

- Absence of effects:
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.
- Disciplined use of effects (state, exceptions, …) can:
 - help making code concise
 - facilitate maintenance
 - improve the efficiency.

Example: A Compiler Fragment (1)

Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) { x = n; }
}
```

In the body of `set`, the one applied occurrence of
- `x` refers to the instance variable `x`
- `n` refers to the argument `n`.

Example: A Compiler Fragment (2)

Consider an AST `Exp` for a simple expression language. `Exp` is a parameterized type: the type parameter `a` allows variables to be annotated with an attribute of type `a`.

```haskell
data Exp a
    = LitInt Int| Var Id
    | UnOpApp UnOp (Exp a)| BinOpApp BinOp (Exp a) (Exp a)| If (Exp a) (Exp a) (Exp a)| Let [(Id, Type, Exp a)] (Exp a)
```

Example: A Compiler Fragment (3)

Example: The following code fragment

```java
let int x = 7 in x + 35
```

would be represented like this (before identification):

```haskell
Let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

After identification:

```haskell
Let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: A Compiler Fragment (4)

Goals of the **identification** phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration.
 - i.e., map unannotated AST `Exp ()` to annotated `Exp Attr`.
- Report conflicting variable definitions and undefined variables.

```haskell
identification :: Exp () -> (Exp Attr, [ErrorMsg])
```

Example: A Compiler Fragment (5)

Example: Before Identification

```haskell
Let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: After Identification

```haskell
Let [("x", IntType, LitInt 7)]
    (BinOpApp Plus (Var "x" (1, IntType)) (LitInt 35))
```

Example: A Compiler Fragment (6)

enterVar inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the **resulting environment** is returned.
- Otherwise an **error message** is returned.

```haskell
enterVar :: Id -> Int -> Type -> Env
    -> Either Env ErrorMsg
```
Functions that do the real work:

identAux ::
 Int -> Env -> Exp ()
 -> (Exp Attr, [ErrorMsg])

identDefs ::
 Int -> Env -> [(Id, Type, Exp ())]-> ([[(Id, Type, Exp Attr)],
 Env, [ErrorMsg])

Example: A Compiler Fragment (8)

identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
 ([(i,t, e') : ds', env'', ms1+ms2+ms3)
 where
 e' = identAux l env e
 (env', ms2) =
 case enterVar i l t env of
 Left env' -> (env', [])
 Right m -> (env, [m])
 (ds', env'', ms3) =
 identDefs l env' ds

Example: A Compiler Fragment (9)

Error checking and collection of error messages arguably added a lot of clutter. And repetitive. The core of the algorithm is this:

Example 1: A Simple Evaluator

data Exp = Lit Integer
 | Add Exp Exp
 | Sub Exp Exp
 | Mul Exp Exp
 | Div Exp Exp
eval :: Exp -> Integereval (Lit n) = neval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2

Answer to Conundrum: Monads (1)

• Monads bridges the gap: allow effectful programming in a pure setting.
• Key idea: Computational types: an object of type \(MA \) denotes a computation of an object of type \(A \).
• Thus we shall be both pure and impure, whatever takes our fancy!
• Monads originated in Category Theory.
• Adapted by
 - Moggi for structuring denotational semantics
 - Wedler for structuring functional programs

Answer to Conundrum: Monads (2)

Monads
• promote disciplined use of effects since the type reflects which effects can occur;
• allow great flexibility in tailoring the effect structure to precise needs;
• support changes to the effect structure with minimal impact on the overall program structure;
• allow integration into a pure setting of real effects such as
 - I/O
 - mutable state.

Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

Making the Evaluator Safe (2)

This Lecture

Pragmatic introduction to monads:
• Effectful computations
• Identifying a common pattern
• Monads as a design pattern
Making the Evaluator Safe (3)

```haskell
safeEval (Mul e1 e2) =  
  case safeEval e1 of  
    Nothing -> Nothing  
    Just n1 ->  
      case safeEval e2 of  
        Nothing -> Nothing  
        Just n2 -> Just (n1 * n2)
```

Making the Evaluator Safe (4)

```haskell
safeEval (Div e1 e2) =  
  case safeEval e1 of  
    Nothing -> Nothing  
    Just n1 ->  
      case safeEval e2 of  
        Nothing -> Nothing  
        Just n2 ->  
          if n2 == 0 then Nothing else Just (n1 `div` n2)
```

Sequencing Evaluations

```haskell
evalSeq :: Maybe Integer  
  -> (Integer -> Maybe Integer)  
  -> Maybe Integer  
  
evalSeq ma f =  
    case ma of  
      Nothing -> Nothing  
      Just a -> f a
```

Exercise 1: Refactoring safeEval

Rewrite `safeEval`, case `Add`, using `evalSeq`:

```haskell
safeEval (Add e1 e2) =  
  case safeEval e1 of  
    Nothing -> Nothing  
    Just n1 ->  
      case safeEval e2 of  
        Nothing -> Nothing  
        Just n2 -> Just (n1 + n2)
```

Exercise 1: Solution

```haskell
safeEval :: Exp -> Maybe Integer  
  
safeEval (Add e1 e2) =  
  safeEval e1 `evalSeq`  
    (
      n1 ->  
      safeEval e2 `evalSeq`  
        (
          n2 -> Just (n1 + n2)
        )
    )
```

Aside: Scope Rules of λ-abstractions

The scope rules of λ-abstractions are such that parentheses can be omitted:

```haskell
safeEval :: Exp -> Maybe Integer  
  
safeEval (Add e1 e2) =  
  safeEval e1 `evalSeq`  
    \n1 ->  
    safeEval e2 `evalSeq`  
      \n2 -> Just (n1 + n2)
```

Refactored Safe Evaluator (1)

```haskell
safeEval :: Exp -> Maybe IntegersafeEval (Lit n) = Just nsafeEval (Add e1 e2) =  
  safeEval e1 `evalSeq`  
    \n1 ->  
    safeEval e2 `evalSeq`  
      \n2 -> Just (n1 + n2)
```

Refactored Safe Evaluator (2)

```haskell
safeEval (Mul e1 e2) =  
  safeEval e1 `evalSeq`  
    \n1 ->  
    safeEval e2 `evalSeq`  
      \n2 -> Just (n1 * n2)
```

Any Common Pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- **Sequencing** of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.
Inlining `evalSeq` (1)

```haskell
safeEval (Add e1 e2) =
safeEval e1 'evalSeq' \n1 ->
safeEval e2 'evalSeq' \n2 ->
    Just (n1 + n2)
```

Inlining `evalSeq` (2)

```haskell
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just a -> (\n1 -> safeEval e2 ...) a
```

Inlining `evalSeq` (3)

```haskell
safeEval (Add e1 e2) =
    case (safeEval e1) of
        Nothing -> Nothing
        Just n1 -> case safeEval e2 of
            Nothing -> Nothing
            Just a -> (\n2 -> ...) a
```

Maybe Viewed as a Computation (1)

- Consider a value of type `Maybe a` as denoting a computation of a value of type `a` that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

```
Maybe Viewed as a Computation (2)

Successful computation of a value:
```mbReturn :: a -> Maybe ambReturn = Just``` Sequencing of possibly failing computations:
```mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe bmbSeq ma f =
    case ma of
        Nothing -> Nothing
        Just a -> f a```

Maybe Viewed as a Computation (3)

Failing computation:
```mbFail :: Maybe ambFail = Nothing```

The Safe Evaluator Revisited

```haskell
safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = mbReturn n
safeEval (Add e1 e2) =
    safeEval e1 'mbSeq' \n1 ->
safeEval e2 'mbSeq' \n2 ->
    mbReturn (n1 + n2)
...
safeEval (Div e1 e2) =
    safeEval e1 'mbSeq' \n1 ->
safeEval e2 'mbSeq' \n2 ->
    if n2 == 0 then mbFail
    else mbReturn (n1 'div' n2))
```

Example 2: Numbering Trees

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)
numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
where
    ntAux :: Tree a -> Int -> (Tree Int, Int)
    ntAux (Leaf _ ) n = (Leaf n, n+1)
    ntAux (Node t1 t2) n =
        let (t1', n') = ntAux t1 n
            in (Node t1' t2', n')```

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?
Stateful Computations (1)

- A **stateful computation** consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:
  
  ```haskell
 type S a = Int -> (a, Int)
 (Only Int state for the sake of simplicity.)
  ```
- A value (function) of type S a can now be viewed as denoting a stateful computation computing a value of type a.

Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. **state updating is an effect**, implicitly affecting subsequent computations. (As we would expect.)

Stateful Computations (3)

Computation of a value without changing the state (For ref.: S a = Int -> (a, Int)):

```haskell
sReturn :: a -> S a
sReturn a = \n -> (a, n)
```

Sequencing of stateful computations:

```haskell
sSeq :: S a -> (a -> S b) -> S b
sSeq sa f = \n ->
 let (a, n') = sa n
 in f a n'
```

Stateful Computations (4)

Reading and incrementing the state (For ref.: S a = Int -> (a, Int)):

```haskell
sInc :: S Int
sInc = \n -> (n, n + 1)
```

Numbering trees revisited

```haskell
data Tree a = Leaf a | Node (Tree a) (Tree a)
numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
where
 ntAux :: Tree a -> S (Tree Int)
 ntAux (Leaf _) = sInc \'sSeq\' \n -> sReturn (Leaf n)
 ntAux (Node t1 t2) =
 ntAux t1 \'sSeq\' \t1\' ->
 ntAux t2 \'sSeq\' \t2\' ->
 sReturn (Node t1' t2')
```

Observations

- The “plumbing” has been captured by the abstractions.
- In particular:
  - counter no longer manipulated directly
  - no longer any risk of “passing on” the wrong version of the counter!

Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
  - A type denoting computations
  - A function constructing an effect-free computation of a value
  - A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a **MONAD**.

Monads in Functional Programming

A monad is represented by:

- A type constructor
  
  ```haskell
 M :: * -> *
 M T represents computations of a value of type T.
  ```
- A polymorphic function
  
  ```haskell
 return :: a -> M a
 for lifting a value to a computation.
  ```
- A polymorphic function
  
  ```haskell
 (>>=) :: M a -> (a -> M b) -> M b
 for sequencing computations.
  ```

Exercise 2: join and fmap

Equivalently, the notion of a monad can be captured through the following functions:

```haskell
return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)
join "flattens" a computation, fmap "lifts" a function to map computations to computations.
Define join and fmap in terms of >>= (and return), and >>= in terms of join and fmap.
```
Exercise 2: Solution

join :: M (M a) -> M a
join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b
fmap f m = m >>= \a -> return (f a)

or:

fmap :: (a -> b) -> M a -> M b
fmap f m = m >>= return . f

(>>>) :: M a -> (a -> M b) -> M b
m >>= f = join (fmap f m)

Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x
m >>= return = m
(m >>= f) >>= g = m >>= (\x -> f x >>= g)

I.e., return is the right and left identity for >>=, and >>= is associative.

Monads in Category Theory (1)

The notion of a monad originated in Category Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

• Kleisli triple/triple in extension form: Most closely related to the >>= version:

  A Kleisli triple over a category \(\mathcal{C}\) is a triple \((T, \eta, \mu)\), where \(T: |\mathcal{C}| \to |\mathcal{C}|\),
  
  \(\eta_A: A \to TA\) for \(A \in |\mathcal{C}|\), \(f^*: TA \to TB\)
  for \(f: A \to TB\).

  (Additionally, some laws must be satisfied.)

Monads in Category Theory (2)

• Monad/triple in monoid form: More akin to the join/fmap version:

  A monad over a category \(\mathcal{C}\) is a triple
  
  \((T, \eta, \mu)\), where \(T: |\mathcal{C}| \to |\mathcal{C}|\) is a functor,
  
  \(\eta: \text{id} \to T\) and \(\mu: T^2 \to T\) are natural transformations.

  (Additionally, some commuting diagrams must be satisfied.)

Reading


• All About Monads.
  
  http://www.haskell.org/haskellwiki/all_about_monads