A Blessing and a Curse
A Blessing and a Curse

• The **BIG** advantage of *pure* functional programming is
A Blessing and a Curse

- The **BIG** advantage of **pure** functional programming is “everything is explicit;” i.e., flow of data manifest, no side effects.
A Blessing and a Curse

- The **BIG** advantage of *pure* functional programming is

 “**everything is explicit;**”

 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.
A Blessing and a Curse

• The **BIG** advantage of *pure* functional programming is

 “everything is explicit;”

 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

• The **BIG** problem with *pure* functional programming is
A Blessing and a Curse

• The **BIG** advantage of *pure* functional programming is
 “everything is explicit;”
 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

• The **BIG** problem with *pure* functional programming is
 “everything is explicit.”
A Blessing and a Curse

- The **BIG** advantage of *pure* functional programming is

 “everything is explicit;”

 i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

- The **BIG** problem with *pure* functional programming is

 “everything is explicit.”

 Can add a lot of clutter, make it hard to maintain code.
Conundrum

“Shall I be pure or impure?” (Wadler, 1992)
Conundrum

“Shall I be pure or impure?” (Wadler, 1992)

- Absence of effects:
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.
“Shall I be pure or impure?” (Wadler, 1992)

- Absence of effects:
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.

- Disciplined use of effects (state, exceptions, …) can:
 - help making code concise
 - facilitate maintenance
 - improve the efficiency.
Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) { x = n; }
}
```
Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) { x = n; }
}
```

In the body of `set`, the one applied occurrence of
- `x` refers to the *instance variable* `x`
Identification is the task of relating each applied identifier occurrence to its declaration or definition:

```java
public class C {
    int x, n;
    void set(int n) {
        x = n;
    }
}
```

In the body of `set`, the one applied occurrence of
- `x` refers to the *instance variable* `x`
- `n` refers to the *argument* `n`.
Consider an AST Exp for a simple expression language. Exp is a parameterized type: the type parameter a allows variables to be annotated with an attribute of type a.

```
data Exp a = LitInt Int
            | Var Id a
            | UnOpApp UnOp (Exp a)
            | BinOpApp BinOp (Exp a) (Exp a)
            | If (Exp a) (Exp a) (Exp a)
            | Let [(Id, Type, Exp a)] (Exp a)
```
Example: The following code fragment

\[
\text{let int } x = 7 \text{ in } x + 35
\]

would be represented like this (before identification):

\[
\begin{align*}
\text{Let } & \quad [("x", \text{IntType}, \text{LitInt 7})] \\
& \quad (\text{BinOpApp} \text{ Plus} \\
& \quad \quad (\text{Var } "x" () \\
& \quad \quad \quad (\text{LitInt 35}))
\end{align*}
\]
Example: A Compiler Fragment (4)

Goals of the *identification* phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration. I.e., map unannotated AST $\text{Exp} ()$ to annotated AST Exp Attr.
- **Report** conflicting variable definitions and undefined variables.

identification ::

$$\text{Exp} () \rightarrow (\text{Exp Attr}, \text{ErrorMsg})$$
Example: A Compiler Fragment (4)

Goals of the *identification* phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration. I.e., map unannotated AST \(\text{Exp} () \) to annotated AST \(\text{Exp Attr} \).
- Report conflicting variable definitions and undefined variables.

\[
\text{identification} :: \quad \text{Exp} () \rightarrow (\text{Exp Attr}, \text{[ErrorMsg]})
\]
Example: A Compiler Fragment (4)

Goals of the *identification* phase:

- Annotate each applied identifier occurrence with attributes of the corresponding variable declaration. I.e., map unannotated AST $\text{Exp}()$ to annotated AST Exp Attr.
- Report conflicting variable definitions and undefined variables.

$\text{identification} :: \text{Exp}() \rightarrow (\text{Exp Attr}, [\text{ErrorMsg}])$
Example: Before Identification

Let [("x", IntType, LitInt 7)]
 (BinOpApp Plus
 (Var "x" ())
 (LitInt 35))
Example: Before Identification

Let [("x", IntType, LitInt 7)]
(BinOpApp Plus
 (Var "x" ()))
 (LitInt 35))

After identification:

Let [("x", IntType, LitInt 7)]
(BinOpApp Plus
 (Var "x" (1, IntType))
 (LitInt 35))
Example: A Compiler Fragment (6)

`enterVar` inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the **resulting environment** is returned.
- Otherwise an **error message** is returned.

\[
\text{enterVar} :: \text{Id} \rightarrow \text{Int} \rightarrow \text{Type} \rightarrow \text{Env} \\
\rightarrow \text{Either} \quad \text{Env} \quad \text{ErrorMsg}
\]
Example: A Compiler Fragment (6)

\texttt{enterVar} inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the \textit{resulting environment} is returned.
- Otherwise an \textit{error message} is returned.

\texttt{enterVar :: Id -> Int -> Type -> Env -> Either Env ErrorMsg}
Example: A Compiler Fragment (6)

\texttt{enterVar} inserts a variable at the given scope level and of the given type into an environment.

- Check that no variable with same name has been defined at the same scope level.
- If not, the new variable is entered, and the resulting environment is returned.
- Otherwise an error message is returned.

\texttt{enterVar :: Id \to Int \to Type \to Env} \to \texttt{Either Env ErrorMsg}
Example: A Compiler Fragment (7)

Functions that do the real work:

identAux ::
 Int -> Env -> Exp ()
 -> (Exp Attr, [ErrorMsg])

identDefs ::
 Int -> Env -> [(Id, Type, Exp ())]
 -> ([(Id, Type, Exp Attr)],
 Env,
 [ErrorMsg])
Example: A Compiler Fragment (8)

```haskell
identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
  ((i,t,e') : ds', env'', ms1++ms2++ms3)
where
  (e', ms1) = identAux l env e
  (env', ms2) =
    case enterVar i l t env of
      Left env' -> (env', [])
      Right m    -> (env, [m])
  (ds'', env'', ms3) =
    identDefs l env' ds
```
Error checking and collection of error messages arguably added a lot of clutter. And repetitive. The core of the algorithm is this:

\[
\begin{align*}
\text{identDefs} \ l \ \text{env} \ [\] & = ([], \ \text{env}) \\
\text{identDefs} \ l \ \text{env} \ ((i, t, e) : \ ds) & = \\
& \quad ((i, t, e') : \ ds', \ \text{env}'') \\
\text{where} \\
& \quad e' = \text{identAux} \ l \ \text{env} \ e \\
& \quad \text{env}' = \text{enterVar} \ i \ l \ t \ \text{env} \\
& \quad (\text{ds}', \ \text{env}''') = \text{identDefs} \ l \ \text{env}' \ \text{ds}
\end{align*}
\]

Errors are just a side effect.
Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful programming in a pure setting.
Monads bridges the gap: allow effectful programming in a pure setting.

Key idea: *Computational types*: an object of type MA denotes a *computation* of an object of type A.
Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: **Computational types**: an object of type MA denotes a *computation* of an object of type A.
- *Thus we shall be both pure and impure, whatever takes our fancy!*
Monads bridges the gap: allow effectful programming in a pure setting.

Key idea: **Computational types**: an object of type MA denotes a computation of an object of type A.

Thus we shall be both pure and impure, whatever takes our fancy!

Monads originated in Category Theory.
Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: **Computational types**: an object of type MA denotes a computation of an object of type A.
- **Thus we shall be both pure and impure, whatever takes our fancy!**
- Monads originated in Category Theory.
- Adapted by
 - Moggi for structuring denotational semantics
 - Wadler for structuring functional programs
Monads

- promote *disciplined* use of effects since the type reflects which effects can occur;
Monads

- promote *disciplined* use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
Monads

- promote *disciplined* use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
Monads

- promote *disciplined* use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of *real* effects such as
 - I/O
 - mutable state.
This Lecture

Pragmatic introduction to monads:

• Effectful computations
• Identifying a common pattern
• Monads as a *design pattern*
Example 1: A Simple Evaluator

```haskell
data Exp = Lit Integer
    | Add Exp Exp
    | Sub Exp Exp
    | Mul Exp Exp
    | Div Exp Exp

eval :: Exp -> Integer
eval (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Div e1 e2) = eval e1 `div` eval e2
```
data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 + n2)
```haskell
safeEval (Sub e1 e2) =
    case safeEval e1 of
        Nothing -> Nothing
        Just n1 ->
            case safeEval e2 of
                Nothing -> Nothing
                Just n2 -> Just (n1 - n2)
```
Making the Evaluator Safe (3)

safeEval (Mul e1 e2) =
 case safeEval e1 of
 Nothing -> Nothing
 Just n1 ->
 case safeEval e2 of
 Nothing -> Nothing
 Just n2 -> Just (n1 * n2)
safeEval \ (\text{Div} \ e1 \ e2) =
\text{case} \ \text{safeEval} \ e1 \ \text{of}
\text{Nothing} \rightarrow \text{Nothing}
\text{Just} \ n1 \rightarrow
\text{case} \ \text{safeEval} \ e2 \ \text{of}
\text{Nothing} \rightarrow \text{Nothing}
\text{Just} \ n2 \rightarrow
\text{if} \ n2 == 0
\text{then} \ \text{Nothing}
\text{else} \ \text{Just} \ (n1 \ \text{`div`} \ n2)
Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?
Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

- *Sequencing* of evaluations (or *computations*).
Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

- **Sequencing** of evaluations (or computations).
- If one evaluation fails, fail overall.
Any Common Pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- *Sequencing* of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.
Sequencing Evaluations

\[
\text{evalSeq} :: \text{Maybe Integer} \\
\quad \rightarrow (\text{Integer} \rightarrow \text{Maybe Integer}) \\
\quad \rightarrow \text{Maybe Integer}
\]

\[
\text{evalSeq \ ma \ f} = \\
\quad \text{case \ ma \ of} \\
\quad \quad \text{Nothing} \rightarrow \text{Nothing} \\
\quad \quad \text{Just \ a} \rightarrow f\ a
\]
Exercise 1: Refactoring `safeEval`

Rewrite `safeEval`, using `evalSeq`:

```haskell
safeEval (Add e1 e2) =
    case safeEval e1 of
        Nothing -> Nothing
        Just n1 ->
            case safeEval e2 of
                Nothing -> Nothing
                Just n2 -> Just (n1 + n2)

evalSeq ma f =
    case ma of
        Nothing -> Nothing
        Just a -> f a
```

MGS 2012: FUN Lecture 3 – p.23/50
Exercise 1: Solution

```
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
    evalSeq (safeEval e1)
    (\n1 -> evalSeq (safeEval e2)
    (\n2 -> Just (n1+n2)))
```

or

```
safeEval :: Exp -> Maybe Integer
safeEval (Add e1 e2) =
    safeEval e1 `evalSeq` (\n1 ->
    safeEval e2 `evalSeq` (\n2 ->
    Just (n1+n2)))
```
Aside: Scope Rules of \(\lambda \)-abstractions

The scope rules of \(\lambda \)-abstractions are such that parentheses can be omitted:

```haskell
safeEval :: Exp \rightarrow\ Maybe\ Integer

...  
safeEval (Add e1 e2) =
  safeEval e1 'evalSeq' \n1 ->
  safeEval e2 'evalSeq' \n2 ->
  Just (n1 + n2)
```

Refactored Safe Evaluator (1)

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
 safeEval e1 `evalSeq` \n1 ->
 safeEval e2 `evalSeq` \n2 ->
 Just (n1 + n2)

safeEval (Sub e1 e2) =
 safeEval e1 `evalSeq` \n1 ->
 safeEval e2 `evalSeq` \n2 ->
 Just (n1 - n2)
Refactored Safe Evaluator (2)

```haskell
safeEval (Mul e1 e2) =
  safeEval e1 'evalSeq' \n1 ->
  safeEval e2 'evalSeq' \n2 ->
  Just (n1 * n2)

safeEval (Div e1 e2) =
  safeEval e1 'evalSeq' \n1 ->
  safeEval e2 'evalSeq' \n2 ->
  if n2 == 0 then Nothing else Just (n1 `div` n2)
```
Inlining `evalSeq` (1)

```haskell
safeEval (Add e1 e2) =
    safeEval e1 'evalSeq' \n1 ->
    safeEval e2 'evalSeq' \n2 ->
    Just (n1 + n2)
```
safeEval (Add e1 e2) =
 safeEval e1 `evalSeq` \n1 ->
 safeEval e2 `evalSeq` \n2 ->
 Just (n1 + n2)

=

safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just a -> (\n1 -> safeEval e2 ...) a
Inlining \texttt{evalSeq} (2)

\begin{verbatim}
safeEval (Add e1 e2) =
 case (safeEval e1) of
 Nothing -> Nothing
 Just n1 -> safeEval e2 'evalSeq' \(n2 \rightarrow \ldots \)
\end{verbatim}
Inlining `evalSeq` (2)

```haskell
safeEval (Add e1 e2) =
    case (safeEval e1) of
      Nothing -> Nothing
      Just n1 -> case safeEval e2 of
        Nothing -> Nothing
        Just a -> (\n2 -> ...) a
```
Inlining `evalSeq` (3)

\[
\text{safeEval } (\text{Add } e1 \ e2) =
\begin{align*}
\text{case } (\text{safeEval } e1) \text{ of} \\
\quad \text{Nothing} & \rightarrow \text{Nothing} \\
\quad \text{Just} \ n1 \rightarrow \text{case } \text{safeEval } e2 \text{ of} \\
\quad \quad \text{Nothing} & \rightarrow \text{Nothing} \\
\quad \quad \text{Just} \ n2 \rightarrow (\text{Just} \ n1 + \ n2)
\end{align*}
\]

Good excercise: verify the other cases.
Consider a value of type `Maybe a` as denoting a computation of a value of type `a` that *may fail*.
Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.

When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
Consider a value of type \texttt{Maybe a} as denoting a \textit{computation} of a value of type \texttt{a} that \textit{may fail}.

When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

I.e. \textit{failure is an effect}, implicitly affecting subsequent computations.
Maybe Viewed as a Computation (1)

- Consider a value of type `Maybe a` as denoting a *computation* of a value of type `a` that *may fail*.

- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

- I.e. **failure is an effect**, implicitly affecting subsequent computations.

- Let’s generalize and adopt names reflecting our intentions.
Successful computation of a value:

\[
\text{mbReturn} :: a \rightarrow \text{Maybe } a \\
\text{mbReturn} = \text{Just}
\]

Sequencing of possibly failing computations:

\[
\text{mbSeq} :: \text{Maybe } a \rightarrow (a \rightarrow \text{Maybe } b) \rightarrow \text{Maybe } b \\
\text{mbSeq } ma f = \\
\quad \text{case } ma \text{ of} \\
\quad \quad \text{Nothing } \rightarrow \text{Nothing} \\
\quad \quad \text{Just } a \quad \rightarrow \quad f \ a
\]
Maybe Viewed as a Computation (3)

Failing computation:

\[
\text{mbFail} :: \text{Maybe} \ a
\]
\[
\text{mbFail} = \text{Nothing}
\]
The Safe Evaluator Revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =
 safeEval e1 `mbSeq` \n1 ->
 safeEval e2 `mbSeq` \n2 ->
 mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =
 safeEval e1 `mbSeq` \n1 ->
 safeEval e2 `mbSeq` \n2 ->
 if n2 == 0 then mbFail
 else mbReturn (n1 `div` n2))
Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
 where

 ntAux :: Tree a -> Int -> (Tree Int, Int)
 ntAux (Leaf _) n = (Leaf n, n+1)
 ntAux (Node t1 t2) n =
 let (t1'', n'') = ntAux t1 n
 in let (t2'', n''') = ntAux t2 n'
 in (Node t1'' t2'', n''')
Observations

- Repetitive pattern: threading a counter through a *sequence* of tree numbering *computations*.
Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!
Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?
A **stateful computation** consumes a state and returns a result along with a possibly updated state.
A *stateful computation* consumes a state and returns a result along with a possibly updated state.

The following type synonym captures this idea:

```
type S a = Int -> (a, Int)
```

(Only `Int` state for the sake of simplicity.)
Stateful Computations (1)

- A **stateful computation** consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:

 \[
 \text{type } S \ a = \text{Int} \rightarrow (a, \text{Int})
 \]

 (Only \text{Int} state for the sake of simplicity.)
- A value (function) of type \(S \ a \) can now be viewed as denoting a stateful computation computing a value of type \(a \).
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. *state updating is an effect*, implicitly affecting subsequent computations. (As we would expect.)
Stateful Computations (3)

Computation of a value without changing the state (For ref.: \(S \ a = \text{Int} \to (a, \text{Int}) \)):

\[
\text{sReturn} :: a \to S a \\
\text{sReturn} \ a = ???
\]
Stateful Computations (3)

Computation of a value without changing the state (For ref.: $S\ a = \text{Int} \rightarrow (a, \text{Int})$):

\[
\text{sReturn} :: a \rightarrow S\ a \\
\text{sReturn}\ a = n \rightarrow (a, n)
\]
Stateful Computations (3)

Computation of a value without changing the state (For ref.: $S\ a = \text{Int} \rightarrow (a, \text{Int})$):

$$s\text{Return} :: a \rightarrow S\ a$$
$$s\text{Return} \ a = \\lambda n \rightarrow (a, n)$$

Sequencing of stateful computations:

$$s\text{Seq} :: S\ a \rightarrow (a \rightarrow S\ b) \rightarrow S\ b$$
$$s\text{Seq} \ sa \ f = ???$$
Stateful Computations (3)

Computation of a value without changing the state (For ref.: $S\ a = \text{Int} \rightarrow (a, \text{Int})$):

$$s\text{Return} :: a \rightarrow S\ a$$
$$s\text{Return}\ a = \lambda n \rightarrow (a, n)$$

Sequencing of stateful computations:

$$s\text{Seq} :: S\ a \rightarrow (a \rightarrow S\ b) \rightarrow S\ b$$
$$s\text{Seq}\ sa\ f = \lambda n \rightarrow$$
$$\quad \text{let } (a', n') = sa\ n$$
$$\quad \text{in } f\ a\ n'$$
Stateful Computations (4)

Reading and incrementing the state
(For ref.: $S \ a = \ \text{Int} \rightarrow (a, \ \text{Int})$):

\[
\begin{align*}
s\text{Inc} :: & \ S \ \text{Int} \\
s\text{Inc} = & \ ???
\end{align*}
\]
Stateful Computations (4)

Reading and incrementing the state
(For ref.: $S \ a = \text{Int} \rightarrow (a, \text{Int})$):

$$sInc :: S \ \text{Int}$$

$$sInc = \backslash n \rightarrow (n, n + 1)$$
Numbering trees revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int
numberTree t = fst (ntAux t 0)
 where
 ntAux :: Tree a -> S (Tree Int)
 ntAux (Leaf _) =
 sInc `sSeq` \n -> sReturn (Leaf n)
 ntAux (Node t1 t2) =
 ntAux t1 `sSeq` \t1' ->
 ntAux t2 `sSeq` \t2' ->
 sReturn (Node t1' t2')
Observations

- The “plumbing” has been captured by the abstractions.
Observations

- The “plumbing” has been captured by the abstractions.
- In particular:
 - counter no longer manipulated directly
 - no longer any risk of “passing on” the wrong version of the counter!
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
Comparison of the examples

• Both examples characterized by sequencing of effectful computations.
• Both examples could be neatly structured by introducing:
Comparison of the examples

• Both examples characterized by sequencing of effectful computations.
• Both examples could be neatly structured by introducing:
 - A type denoting computations
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
Comparison of the examples

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations
Comparison of the examples

• Both examples characterized by sequencing of effectful computations.

• Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations

• In fact, both examples are instances of the general notion of a `MONAD`.
Monads in Functional Programming

A monad is represented by:

- A type constructor
 \[M :: \star \rightarrow \star \]
 \(M \ T \) represents computations of a value of type \(T \).

- A polymorphic function
 \[\text{return} :: a \rightarrow M \ a \]
 for lifting a value to a computation.

- A polymorphic function
 \[(\gg\gg\gg=) :: M \ a \rightarrow (a \rightarrow M \ b) \rightarrow M \ b \]
 for sequencing computations.
Exercise 2: join and fmap

Equivalently, the notion of a monad can be captured through the following functions:

\[
\begin{align*}
\text{return} & ::= a \rightarrow M a \\
\text{join} & ::= (M (M a)) \rightarrow M a \\
\text{fmap} & ::= (a \rightarrow b) \rightarrow (M a \rightarrow M b)
\end{align*}
\]

join “flattens” a computation, fmap “lifts” a function to map computations to computations.

Define join and fmap in terms of \(>>= \) (and return), and \(>>= \) in terms of join and fmap.

\[
(\ggg) ::= M a \rightarrow (a \rightarrow M b) \rightarrow M b
\]
Exercise 2: Solution

\[\text{join} :: \text{M} (\text{M} \ a) \rightarrow \text{M} \ a\]
\[\text{join} \ \text{mm} = \text{mm} \gg= \text{id}\]

\[\text{fmap} :: (a \rightarrow b) \rightarrow \text{M} \ a \rightarrow \text{M} \ b\]
\[\text{fmap} \ f \ m = m \gg= \ \lambda a \rightarrow \text{return} \ (f \ a)\]

or:

\[\text{fmap} :: (a \rightarrow b) \rightarrow \text{M} \ a \rightarrow \text{M} \ b\]
\[\text{fmap} \ f \ m = m \gg= \text{return} \ . \ f\]

\[(\gg=) :: \text{M} \ a \rightarrow (a \rightarrow \text{M} \ b) \rightarrow \text{M} \ b\]
\[m \gg= f = \text{join} \ (\text{fmap} \ f \ m)\]
Monad laws

Additionally, the following laws must be satisfied:

\[
\text{return } x \mathbin{>>=} f = f x
\]
\[
m \mathbin{>>=} \text{return} = m
\]
\[
(m \mathbin{>>=} f) \mathbin{>>=} g = m \mathbin{>>=} (\lambda x \to f x \mathbin{>>=} g)
\]

I.e., \text{return} is the right and left identity for \mathbin{>>=} , and \mathbin{>>=} is associative.
Monads in Category Theory (1)

The notion of a monad originated in Category Theory. There are several equivalent definitions (Benton, Hughes, Moggi 2000):

- **Kleisli triple/triple in extension form**: Most closely related to the >>= version:

 A **Klesili triple** over a category \mathcal{C} is a triple $(T, \eta, _\star)$, where $T : |\mathcal{C}| \to |\mathcal{C}|$, $\eta_A : A \to TA$ for $A \in |\mathcal{C}|$, $f^* : TA \to TB$ for $f : A \to TB$.

 (Additionally, some laws must be satisfied.)
Monads in Category Theory (2)

- **Monad/triple in monoid form:** More akin to the join/fmap version:

 A **monad** over a category \(C \) is a triple \((T, \eta, \mu)\), where \(T : C \rightarrow C \) is a functor, \(\eta : \text{id}_C \rightarrow T \) and \(\mu : T^2 \rightarrow T \) are natural transformations.

 (Additionally, some commuting diagrams must be satisfied.)
Reading

• *All About Monads.*

 http://www.haskell.org/haskellwiki/all_about_monads