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Abstract Characterising a problem in terms of a system of equations is common to many

branches of science and engineering. Due to their size, such systems are often described in

a modular fashion by composition of individual equation system fragments. Checking the

balance between the number of variables (unknowns) and equations is a common approach

to early detection of mistakes that might render such a system unsolvable. However, current

approaches to modular balance checking have a number of limitations. This paper inves-

tigates a more flexible approach that makes it possible to treat equation system fragments

as true first-class entities. Furthermore, the approach handles so-called structurally dynamic

systems, systems whose behaviour changes discretely and abruptly over time. The central

idea is to record balance information in the type of an equation fragment. This information

can then be used to determine if individual fragments are well formed, and if composing

fragments preserves this property. The type system presented in this paper is developed in

the context of Functional Hybrid Modelling (FHM). However, the key ideas are in no way

specific to FHM, but should be applicable to any language featuring a notion of modular sys-

tems of equations, including systems with first-class components and structural dynamism.

Keywords Systems of equations · First-class components · Non-causal, structurally

dynamic modelling · Structural analysis · Linear constraints · Refinement types.

1 Introduction

Systems of equations, also known as simultaneous equations, are abundant in science and

engineering. Applications include modelling, simulation, and optimisation, to name but a

few. Describing complex problems mathematically, e.g. modelling the engine of a car, of-

ten requires a large number of equations; systems consisting of hundreds of thousands of

equations are not uncommon. The systems are usually parametrised, describing not just a

specific problem instance, but a set of problems. Moreover, it is more of a rule than an
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Fig. 1: Full-wave rectifier

exception that no known analytical solution exists, necessitating the use of computers and

numerical methods for finding (sufficiently good approximate) solutions. Due to the size

of the equation systems, some form of abstraction mechanism that supports a modular for-

mulation by composition of individual equation system fragments, typically referred to as

system components, is often a practical necessity as well.

As an example, consider the full-wave rectifier in Fig. 1. This is not a very big system,

consisting of only eight components. Yet, the advantages of being able to derive a system

of equations that model this circuit by reusing parametrised models of the individual com-

ponents should be clear. For instance, a single diode model could be reused four times, for

diodes D1–D4. More generally, physically accurate component models can be very involved,

making it highly desirable to develop libraries of reusable components.

A number of high-level equation-based languages exist across a range of application

domains, supporting a modular, parametrised formulation of systems of equations. These

languages are supported by an environment that include appropriate approaches for solv-

ing the equations given specific values for the parameters, or for solving optimisation or

parameter fitting problems. Examples in the area of modelling and simulation of physical

systems, languages which could be used to model circuits like the one in Fig. 1, include

Modelica [21], VHDL-AMS [16] and Verilog-AMS [1].

In modern, high-level programming languages, types play a crucial role. Types aid in

creating safe programs that conform with their specification. The power of a type system

can vary greatly, ranging from languages such as C [2], in which types make very few

guarantees about correctness, to languages such as Agda [26], where types can be used to

specify very precise correctness criteria. In particular, Agda employs dependent types [19]

that allow the programmer to not only specify the properties of programs, but also to prove

these properties within the language itself.

Equation-based languages are often also typed, with the types playing much the same

roles as in conventional programming languages. Additionally, simple invariants related to

the structure of the equation systems may be enforced, such as there being equally many

equations as variables to solve for, with a view to static detection of structural problems that

are likely to render the systems ill-formed and thus unsolvable.

However, there is considerable scope for improving the type systems of current equation-

based languages in the latter respect, both in terms of refining the enforced structural invari-

ants, thus allowing more potential problems to be detected early, and to generalise this to
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a setting where equation system fragments have first-class status and where the systems of

equations as such may be structurally dynamic: evolving over time. Current, main-stream,

equation-based languages have quite limited support for structural dynamism, and making

these languages more flexible in that respect is an active research area [25,27,14,32]. This

work has thus far focused on constructs and mechanisms for expressing and solving struc-

turally dynamic systems, while little attention has been paid to finding suitable structural

invariants for this more general setting.

In the following, we seek to address the above points. We develop a type system for

modular systems of equations that enforces a refined set of structural invariants while sup-

porting first-class components and structural dynamism. We treat equations in the abstract

in our formal development, not assuming any specific application domain. However, we do

need a concrete language for expressing modular, structurally dynamic systems of equa-

tions. To that end, we develop a core equation-based language that captures the essence of

Functional Hybrid Modelling (FHM) [25,14]. FHM is a framework for modelling physical

systems that can be described by differential equations, such as the full-wave rectifier above.

For this reason, most of our examples will also be drawn from physical systems modelling,

with the unknowns in the equations representing time-varying entities (functions of time).

FHM was chosen as it features component-based modelling, first-class models, and struc-

tural dynamism in a relatively minimalistic way. However, we reiterate that the core ideas

put forward in this paper are not at all limited to FHM. Our specific contributions are:

1. A novel type system for modular systems of equations supporting first-class components

and structural dynamism.

2. A refined set of structural invariants based on classification of equations allowing a

larger class of structural anomalies to be prevented compared with existing approaches.

3. A concise small-step semantics for the core of FHM, capturing the subtle behaviour of

variables in a modular system of equations.

We have also implemented a type checker for our system capable of inferring types

[6]. It is implemented in the dependently typed language Agda [26] primarily to ensure

totality and termination of the inference algorithm, but also with a view to facilitate formal

verification of aspects of the type system at a later stage.

The remainder of this article is structured as follows. Sections 2 and 3, respectively, in-

troduces modular systems of equations and FHM. Section 4 investigates structural properties

of equation systems, setting the stage for Sect. 5 that presents the main technical contribu-

tion of this article: the core language, its semantics, the type system, and implementation

notes. Section 6 evaluates what has been achieved, in part through a complete worked ex-

ample. Related work is considered in Sect. 7, while avenues for future work are discussed

in Sect. 8. Finally, Section 9 concludes.

2 Modular Systems of Equations

This section gives a detailed introduction to modular systems of equations, covering basic

theory, modularity, abstraction over systems, causality, and structural dynamism.

2.1 Preliminaries

A system of equations is a set of equations over a set of variables or unknowns. It has a

solution if every variable in the system can be instantiated with a value such that all the
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equations are simultaneously satisfied. The domain of the variables and signatures for equa-

tions is mostly orthogonal to the work presented in this article. However, for reasons of

presentation, we will use the domains of reals or time-varying reals unless stated otherwise.

The following is an example of a system consisting of two equations and two unknowns:

x2 + y = 0 (1)

3x = 10 (2)

This system can be solved by using (2) to solve for x, substituting the value of x into (1), thus

enabling the latter to be used to solve for y. However, consider the following parametrised

version of the system instead. The solvability of the system now depends on the value of the

coefficient c: when c = 0, no solution exists.

x2 + y = 0 (3)

cx = 10 (4)

Whether or not a system of equations has a solution is an important property. For exam-

ple, if a system of equations is intended to model a physical system, unsolvability would be

indicative of a modelling fault. However, as the trivial example above illustrates, unless all

aspects of the system are known, it may not be possible to answer this question, at least not

directly. Moreover, depending on the domain, the question is in general undecidable.

Yet, when building systems of equations modularly, it is desirable to catch problems that

may ultimately lead to unsolvable systems of equations early; i.e., already at the level of in-

dividual equation system fragments or partial compositions of fragments. One property that

can be checked modularly is whether the number of equations and unknowns agree. While

an equal number of equations and unknowns in itself is neither a necessary nor sufficient

condition for solvability, an unequal number is in practice often indicative of problems. Con-

sequently, rules pertaining to the balance between the number of equations and unknowns

are adopted in industrial-strength, equation-based languages such as Modelica [21].

We will discuss structural properties in more depth in Sect. 4. In particular, we will iden-

tify invariants that are more refined than basic equation and variable balance, thus allowing

checking for a larger class of structural problems, while still admitting modular checking in

a setting with first-class equation system fragments and structural dynamism. In Sect. 5 we

will then proceed to show how these refined invariants can be integrated into a type system.

2.2 Abstraction over Systems of Equations

The equation systems needed to describe real-world problems are usually large and complex.

On the other hand, there tends to be a lot of repetitive structure [10], making it beneficial to

describe the systems in terms of reusable equation system fragments. For example, consider

an electrical circuit comprising resistors, capacitors, and inductors. Each component can be

described by a small equation system, and the entire circuit can then be described modularly

by composition of instances of these for specific values of any parameters.

While the exact syntactic details vary between languages, the idea is to encapsulate a set

of equations as a component with a well-defined interface. Let us illustrate with an example,

temporarily borrowing the syntax of the λ -calculus for the abstraction mechanism:

λ (x,y)→
x+ y+ z = 0

x− z = 1
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This abstraction is a relation that constrains the possible values of the two interface variables

x and y according to the encapsulated equations. The variable z is local to the abstraction.

Call the above relation rel. It can now be used as a building block by instantiating it:

substituting expressions for the interface variables and renaming local variables as necessary

to avoid name clashes. We express this as relation application, denoted by ⋄:

u+ v+w = 10

rel ⋄ (u,v)

rel ⋄ (v,w+7)

After unfolding and renaming, often referred to as flattening or elaboration, the following

unstructured (as opposed to modular) set of equations is obtained:

u+ v+w = 10

u+ v+ z1 = 0

u− z1 = 1

v+(w+7)+ z2 = 0

v− z2 = 1

The relation rel contributes 2 equations for each application. Including the top-level equa-

tion, the fully elaborated system thus consists of 5 equations in total over 5 unknowns. Note

the need to rename the local variable z when unfolding rel.

2.3 Causality

A causal system is one in which the cause-and-effect relationship between variables is ex-

plicit. In other words, the equations are directed: the equations are solved in a given order,

with known (at that point) variables on one side of the equal sign, and a single unknown on

the other (which then becomes a known in subsequent equations). One example is a set of

ordinary differential equations (ODEs) in explicit form where the system state at a point in

time is considered known, enabling the state derivatives at that point in time to be computed

(from which the system state at the “next” point in time can then be approximated). Con-

versely, an acausal system is undirected with the equations simply expressing a relation on

the variables, without any á priori given inputs and outputs, and thus also without any á pri-

ori given strategy for solving the equations. Differential Algebraic Equations (DAEs) [10]

are an important example of acausal equations in the domain of modelling and simulation.

As a concrete example, consider Pell’s equation [3] over the two unknowns x and y and

parametrised by an integer n:

x2 −ny2 = ±1

The above equation is acausal: depending on which variable is known in some specific

context, the equation can be translated into two different assignments:

y :=
√

(x2 ±1)/n x :=
√

±1+ny2

The advantage of the acausal formulation is that the equations are more reusable (above,

Pell’s equation is used in two ways) and more declarative (the equations can be expressed in

whatever way is most clear, without undue concerns about how they are going to be solved).



6

i

D1

R

G

u
AC

u
R

D2 D3

D4u
D1

u
D2

u
D4

u
D3

C u
C

Fig. 2: Full-wave rectifier modelled using ideal diodes.

These points are crucial advantages in many domains, including modelling and simulation

of large-scale physical systems [9]. A number of successful acausal modelling languages

have thus been developed, with Modelica [21] being a prominent, state-of-the-art example.

2.4 Structural Dynamism

In a temporal setting, where equations express relations among time-varying entities, the

equations themselves may change at various points in time to capture changes in the system

configuration. A system of equations that evolve over time is known as structurally dynamic.

As an example, consider the model in Fig. 2 of the full-wave rectifier from Fig. 1 [24].

The modeller has chosen an ideal model for the diodes: an electrical switch that is closed

(diode conducting) whenever the voltage across it is positive, and open otherwise (diode not

conducting). Depending on which switches are open and which are closed, there are up to

24 = 16 structural configurations, each corresponding to a distinct system of equations.

Structurally dynamic systems offer greater expressivity, but also create many problems

[25,27,14,32]. Of particular concern in this article is that errors in a system with a large or

possibly even unbounded number of configurations may take a very long time to surface if

this error only manifests itself when specific system configurations become active. Thus, the

larger the class of such errors that can be caught statically by enforcing suitable structural

invariants, the better. We consider invariants for structural dynamism in Sect. 4.3.

3 Functional Hybrid Modelling and Hydra

We now turn our attention to a particular approach to acausal, equation-based languages for

modelling and simulation of physical systems, Functional Hybrid Modelling (FHM), as this

provides a useful, concrete setting for our work. Hydra [25,14] is an example of an FHM

language. Its syntax will be adopted until a formal core language is presented in Sect. 5.2.

3.1 Functional Reactive Programming

FHM is inspired by Functional Reactive Programming (FRP) [12,31], in particular as em-

bodied by Yampa [23]. FHM can be viewed as a generalisation of Yampa, hence, we will
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begin by introducing the two central concepts of Yampa: signals and signal functions. Con-

ceptually, a signal is a time-varying value: i.e: a function from time to a value of type τ :

Time ≈ R
+

Signal τ ≈ Time → τ

Time is represented as R
+, the continuous, non-negative real numbers. The type of the time-

varying value is represented by τ . A signal function is then simply a function on signals:

SF α β ≈ Signal α → Signal β

The ≈ symbol is used to emphasise the conceptual nature of the above definitions, which

are not used directly in the implementation of Yampa. In particular, signal functions are

required to be temporally causal: the output of a signal function at time t may only depend

on the input signal on the interval [0, t ]. Despite this, the conceptual definitions are useful

for developing an intuition about the semantics of both FRP and FHM.

3.2 Signal Relations

The above definitions of signals and signal functions describe systems that are inherently

causal. Signal functions are directed, taking an input signal and returning an output signal.

FHM generalises signal functions to signal relations. Signal relations are acausal: they do

not distinguish between inputs and outputs but rather express how signals are related to one

another. A signal relation may be viewed as a predicate on a signal:

SR τ ≈ Signal τ → Prop

To recover n-ary relations, one can observe the following isomorphism: ∀α β . Signal α ×
Signal β ≃ Signal (α × β ). Unary signal relations thus suffice for representing n-ary re-

lations. For example, given a binary predicate (≡) : R × R → Prop, the following binary

signal relation can be constructed:

(≡sr) : SR (R,R)
(≡sr) s ≈ ∀ t : Time . (≡) (s t)

3.3 Hydra

Hydra [25,14] is a functional hybrid modelling language embedded in the functional pro-

gramming language Haskell [17]. There are two levels to FHM and thus to Hydra: the func-

tional level, concerned with defining ordinary functions operating on time-invariant values,

and the signal level, concerned with the definition of relations between signals (time-varying

values), and, indirectly, the definition of the signals themselves as solutions satisfying the

constraints imposed by the signal relations. The definitions at the signal level may freely

refer to entities defined at the functional level, but signal level objects are not permitted to

escape to the functional level, with the exception of instantaneous values of signals, which
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may be fed back to the functional level at the time of discrete events. This allows future

system configurations to depend on earlier results.

Signal relations are constructed using the sigrel primitive, marking the boundary be-

tween the two levels:

sigrel pattern where equations

Signal relations are first-class, time-invariant, function-level objects that encapsulate a set of

equations. These equations range over signal variables introduced by the pattern, similar to

the abstraction mechanism presented in Sect. 2.2. A pattern is a (possibly nested) tuple (e.g.

((x,y),z) constitutes a valid pattern introducing 3 signal variables). We refer to these signal

variables as interface variables. Signal variables that occur in the set of equations but not in

the pattern are referred to as local variables. They do not occur anywhere else in the system.

Signals are not first class entities in the language. There are two basic forms of equations:

atomic equation: e1 = e2

signal relation application: sr ⋄ e3

Here, sr is a time-invariant expression (signal variables must not occur in it) denoting a

signal relation, and ⋄ denotes signal relation application. To illustrate, consider a component

twoPin encapsulating equations common to all electrical components with two pins:

type Pin = (R,R)

twoPin : SR (Pin,Pin,Voltage)
twoPin = sigrel (p,n,u) where

p.i + n.i = 0

p.v − n.v = u

Pin is a pair of values representing an electrical junction with projections for current and

voltage. For clarity, we allow ourselves to use dot-notation for the projections; e.g. p.i for

the current through pin p and p.v for the voltage (potential) at pin p. We can now define

models of concrete electrical components by adding equations to the basic twoPin-model.

For example, a model of a resistor:

resistor : Resistance → SR (Pin,Pin)
resistor r = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
r ∗ p.i = u

The resistor component extends twoPin by adding an equation that describes the behaviour

of a resistor. The component shows how a system can be parametrised by a coefficient, in

this example by the parameter r. The syntax local has been adopted to make explicit the

quantification of the local variable u, and distinguish it from r, which is a time-invariant,

functional-level parameter.

From here, we can define models for other two-pin components such as inductors and

capacitors in the same way. Note how the twoPin signal relation is reused in each case. Here,

the keyword der indicates the time derivative of a signal:

inductor : Inductance → SR (Pin,Pin)
inductor i = sigrel (p,n) where

local u
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twoPin ⋄ (p,n,u)
l ∗ der p.i = u

capacitor : Capacitance → SR (Pin,Pin)
capacitor c = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
c ∗ der u = p.i

Elaboration of Hydra models proceeds by substitution of variables under signal rela-

tion application, resulting in either a flat set of equations, or a λ -expression. To illustrate,

consider the modular system of equations in the relation resistor 220:

twoPin ⋄ (p,n,u)
220 ∗ p.i = u

A single step of unfolding eliminates the relation application, producing a flat system of 3

equations: two originating from twoPin, and a third contributed by resistor.

p.i + n.i = 0

p.v − n.v = u

220 ∗ p.i = u

3.4 Structural Dynamism in Hydra

To express structurally dynamic systems, Hydra employs a switch construct that allows

equations to be brought into and removed from a model as needed:

initially [ ;when condition ] ⇒
equations1

when condition ⇒
equations2

. . .
when condition n ⇒

equationsn

Only the equations from one branch are active at any one point in time. The equations

of a branch are switched in whenever the condition guarding the branch becomes true, at

which point those from the previously active branch are switched out. The keyword initially

designates the initially active branch. An optional condition allows for the initial branch

to be re-activated later. Should more than one switch condition within a switch construct

trigger simultaneously, the branches are prioritised syntactically from the top down.

Additional complications arise due to the need to properly initialise the new system of

equations after a switch. This is a hard problem in general, but it can be addressed at least

to some extent by providing separate initialisation and reinitialisation equations [14,24].

However, we will not consider this further here as this just amounts to additional systems of

equations that can be subjected to much the same invariants as the main system.

For a concrete example, consider the following Hydra model of an ideal diode; i.e.,

essentially a voltage-controlled electrical switch [24]:
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icDiode : SR (Pin,Pin)
icDiode = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
initially;when p.v − n.v > 0 ⇒

u = 0

when p.i < 0 ⇒
p.i = 0

Whenever the voltage across the diode becomes positive, the diode starts conducting, mean-

ing the switch closes resulting in the voltage across the diode becoming zero. Conversely,

whenever the current starts to flow backwards through the diode, the diode stops conducting,

meaning the switch opens and the current through the diode becomes zero.

4 Structural Properties

4.1 Structural Properties and Solvability

An important question regarding a system of equations is whether it has a solution and, if

so, if that solution is unique. In general, one can only answer this question by studying a

complete system of equations where all coefficients are known. Unfortunately, this is in di-

rect opposition to the modular approach discussed in Sect. 2 as it would rule out checking

components in isolation. Furthermore, as typical application domains, such as physical sys-

tems modelling, necessitates that the form of equations is not unduly restricted, one cannot

in general hope to construct a decidable type theory capable of determining if an arbitrary

modular system of equations has a solution. (For example, a modelling language restricting

the systems of equations to be linear would be of very limited use.)

However, there are simple criteria that, while neither necessary nor sufficient for guar-

anteeing solvability, are such that violation of them are likely to be indicative of problems.

Indeed, they may even be necessary preconditions for the specific approach to solving equa-

tions used by a tool. Enforcing that such criteria be met through the static semantics of an

equation-based language can thus be useful, and is in fact often done. The following are two

commonly used criteria for checking the well-formedness of systems [4,5,7,21,22]:

1. Balanced system: the number of equations is equal to the number of variables.

2. Structurally non-singular system: there is a bijection between the variables and the equa-

tions such that each variable is paired with an equation in which it occurs.

As we are only considering systems of finite size, property 2 implies property 1. Note that

these properties are strictly structural: no information beyond which variables occur, and in

which equations, is assumed. For illustration, consider the following system:

x+ y = z (5)

x+3 = 12 (6)

y2 +9 = z2 (7)

The bijection {x 7→ 6,y 7→ 7,z 7→ 5} between the set of variables {x,y,z} and the set of

equations {5,6,7} pairs each variable with an equation in which it occurs. This system

is thus both balanced and structurally non-singular. Furthermore, as it happens, it has a

solution: x = 9, y = −4, z = 5.
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On the other hand, it is easy to construct a system that violates the above criteria, but yet

still possesses a solution. Consider:

x = 2

x2 +1 = 5

This system is not even balanced. Yet x = 2 is clearly a solution. This shows that the above

criteria are not necessary for the existence of a solution, and it is also easy to demonstrate

that the criteria are not sufficient either.

Given the above examples, it is reasonable to ask what is it that makes these two criteria

useful? The criteria stem from the fact that a linear system of equations has a unique solution

if and only if the equations are independent and the number of equations and variables agree.

If a linear system of equations has more variables than independent equations, it is said to

be underdetermined. Conversely, if there are more independent equations than variables, it

is said to be overdetermined. Intuitively, one could interpret each variable as a degree of

freedom, and each equation as a constraint that eliminates a degree of freedom; i.e., is used

to solve for a variable.

This latter intuition is broadly valid also for general systems of equations. In particular,

structural non-singularity, which says that there is an equation that can be used to solve

for each variable, is exactly what is needed for a number of (symbolic and/or numerical)

methods that attempt to solve general systems of equations. Thus, if a system is structurally

singular, commonly used solution methods will definitely fail. The balance criterion is a

coarse approximation of structural non-singularity, essentially assuming that any equation

can be used to solve for any variable. However, it is easy to check, and if violated, then that

implies that the system is certainly structurally singular. On the other hand, even though

neither criterion is necessary for the existence of a solution, insisting that the criteria be

met is not overly restrictive in practice. Consequently, both criteria constitute useful static

checks that can help find errors early during compilation.

In the following, we will develop criteria along the lines discussed above, but insist

that they can be checked modularly, to enable integration into a type system and support

first-class equation system fragments, and that they also work in a setting with structural

dynamism. We will aim for a better approximation of structural non-singularity than basic

balance checking by taking some account of which variables occur in which equations, but

we will stay well short of attempting a full check for structural non-singularity, as a precise

check cannot be done modularly or in a structurally dynamic setting, and as taking indi-

vidual variable occurrences into account for a more precise approximation leads to a very

complicated and expensive system [22]. We will refer to the difference between the number

of equations and variables in a system as the equation-variable balance. By analogy to the

terminology used for linear systems, but regardless of whether the equations are independent

or even linear, we will refer to a system where the balance is positive as overconstrained and

one where the balance is negative as underconstrained.

4.2 Criteria for Structurally Well-formed Signal Relations

The crux of the type system discussed in this paper is the insistence that a modular system

of equations satisfy certain structural properties. This is enforced by introducing constraints

at the type level (Sect. 5). We introduce 5 criteria below, stemming from the setting of FHM,

from which such constraints can be generated. It is conceivable that different application
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domains could require constraints specific to that domain. This is not a problem, provided

the constraints are linear inequalities, as the system developed in this article is independent

of the criteria used to generate constraints.

In order to formulate structural criteria for well-formedness of signal relations, let us

first define a number of terms and quantities pertaining to the different kinds of variables and

equations. Given a signal relation, the number of interface variables (Sect. 3.3) is denoted by

iZ . The number of local variables, denoted lZ , is then just the number of variables occurring

in the equations minus the number of interface variables. The set of equations in a signal

relation can be partitioned into disjoint subsets of interface, local, and mixed equations:

– interface equation: only interface variables occur.

– local equation: only local variables occur.

– mixed equation: both interface and local variable occur.

The number of interface, local, and mixed equations is denoted iQ, lQ, and mQ respectively.

Consequently, the total number of equations aQ = iQ + lQ + mQ.

A signal relation is structurally well-formed if the following 5 criteria are satisfied:

1. lQ + mQ > lZ: The local variables are not underconstrained.

2. lQ 6 lZ : The local variables are not overconstrained.

3. iQ 6 iZ : The interface variables are not overconstrained.

4. aQ − lZ 6 iZ: A signal relation must not contribute more equations than there are

interface variables (no over-contribution).

5. lQ > 0,mQ > 0,and iQ > 0: When considering structurally dynamic systems, we

will permit negative contributions at intermediate stages, but insist that ultimately, the

contribution of each equation kind should be non-negative.

To illustrate, let us return to the resistor example from Sect. 3.3. We have iZ = 4 (recall

that each Pin contains two variables), lZ = 1, iQ = 0, lQ = 0, mQ = 3 (the application

of twoPin contributes 2 mixed equations), and thus aQ = 3. The following 7 constraints are

generated from the 5 criteria: (1) 0 + 3 > 1, (2) 0 6 1, (3) 0 6 4, (4) 3 − 1 6 4, and

(5) 0 > 0, 3 > 0, 0 > 0. All constraint criteria are satisfied. Hence, resistor is structurally

well-formed according to the above criteria.

The question remains as to how the above criteria relate to the two criteria discussed

in the previous section. The criteria here are stronger than insisting on balance, as a mod-

ular form of variable counting can be derived using criteria (4) and (5) alone. However,

the constraints are weaker than insisting on a bijection between equations and variables:

the constraints would need to consider the incidence matrices of equations and variables to

determine if a bijection exists, as investigated by Nilsson [22]. However, by taking some

account of which variables occur in which equations through the partitioning into interface,

local, and mixed equations, we have achieved a better approximation to checking for struc-

tural non-singularity than basic balance checking, while retaining a modular formulation

that, as we will see in the next section, can be extended to account for structural dynamism.

4.3 Well-formedness and Structural Dynamism

Recall that a structurally dynamic system of equations is one where the equations are al-

lowed to vary over time (Sect. 2.4). As FHM permits structurally dynamic systems (Sect. 3.4),

we need to consider how to generalise the notion of structural well-formedness to work in a

structurally dynamic setting. The nature of structural dynamism in FHM means that a very
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large, possibly even unbounded, number of system configurations are possible. Thus, we

cannot hope to enumerate the configurations and check each one. Rather, we need to recon-

cile the structural properties of the branches of the switch blocks (the variable parts of an

FHM system) - without losing too much information - into structural properties that hold

at all times for each switch block as a whole, and then use this reconciled information to

ascertain the well-formedness of the entire system.

There are a number of ways to compare the structure of different switch branches. One

approach might be to insist that each branch have an identical structure: every branch con-

sists of the same number of each kind of equation. Let us call this the strong approach for the

purpose of this discussion. However, this approach is very restrictive. To understand why,

consider a switch with two branches: the first branch consists of an interface equation and a

local equation, the second branch consists of two mixed equations. These branches clearly

have a very different structure, but are arguably interchangeable: both branches can be used

to solve for one interface variable and one local variable.

An obvious alternative is to discard the equation kind information altogether and require

only that each branch of a switch block contribute the same number of equations. Let us call

this the weak approach. Clearly, the previous example now checks under this scheme as both

branches contribute 2 equations. However, this approach is arguably too permissive: there

are equation systems that contribute the same number of equations but are not structurally

compatible. Indeed, this was the very reason to introduce equation kinds in the first place.

Instead, we adopt reconciliation constraints that enforce a stronger notion of structural

compatibility than simple equation-variable balance, without requiring the branches of a

switch block to be structurally identical. We refer to this as the fair approach. The constraints

are defined over an n-branch switch block, containing n sets of equations q1 . . . qn, where qk

consists of lk local equations, mk mixed equations, and ik interface equations. The variables

l, m, and i are fresh variables denoting the local, mixed, and interface contribution of the

reconciled block as a whole. The constraints are parametrised on k, and the reconciliation

constraints for a switch block are obtained by instantiating them for each branch:

6. l > lk > 0: The reconciled system contributes at least as many local equations as the

systems being reconciled. All local contributions must be positive.

7. i > ik > 0: The reconciled system contributes at least as many interface equations as

the systems being reconciled. All interface contributions must be positive.

8. m 6 mk − (l − lk) − (i − ik): The reconciled system may use mixed equations (from

inside or outside the switch block) to compensate for any deficit in the required num-

ber of interface or local equations. This may result in m being negative, requiring the

enclosing context of the switch block to contribute additional mixed equations.

9. l + m + i = lk + mk + ik: The reconciled system contributes the same number of equa-

tions as each branch. Thus, each branch must have the same contribution.

The driving intuition is that we must find and associate some specific, time-invariant

number of local variables and interface variables with each switch block such that the block,

regardless of which branch is active, can provide that many equations to solve for interface

and local variables respectively. The reason is that we then can rely on the block to always

contribute equations to that end, meaning we effectively can view the block as a static equa-

tion system fragment with that specific contribution. Note that these two numbers must be at

least as high as the maximal number of local equations and interface equations respectively

over all branches. Otherwise some branches will contribute more local or interface equations

than can be used. A subtlety is that the number of mixed equations contributed by a switch

block is allowed to be negative. This just means that the switch block may need to “borrow”
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some mixed equations from the enclosing context in order to make up for a deficit of the

number of local or interface equations in some branches.

To demonstrate, consider the following contrived example dynamism1:

dynamism1 : SR (R,R) → SR R

dynamism1 sr = sigrel x where

local u

initially

f u = 0

g x = 0

when u < 0 ⇒
sr ⋄ (x,u)

The relation contains a switch block with two branches: the initially branch consists of 1 lo-

cal equation and 1 interface equation, while the when branch consists of n mixed equations,

where n is the contribution of the relation sr. The switch block would be rejected under the

strong approach, as the structure of the two branches is not identical.

However, under the fair approach, the block is reconcilable. Applying the rules to each

branch of the switch results in 8 constraints that must be satisfied: l > 1 > 0, l > 0 > 0,

i > 0 > 0, i > 1 > 0, m 6 0− (l− 1)− (i− 1), m 6 n− (l− 0)− (i− 0), l + m + i = 2,

and l + m + i = n. Through simplification, we can verify that they are satisfiable with l = 1,

m = 0, i = 1, and n = 2.

For another example, consider dynamism2 below. The switch block provides an interface

equation in one branch and a local equation in the other. These branches are thus not imme-

diately reconcilable. However, by considering the mixed equation in the enclosing context,

it is possible for the entire relation to be balanced, regardless of which branch is active:

dynamism2 : SR R

dynamism2 = sigrel x where

local u

initially

f x

when x > 0 ⇒
g u

h x u

Applying the fair approach results in the following constraints: l > 0 > 0, l > 1 > 0,

i > 1 > 0, i > 0 > 0, m 6 0− (l− 0)− (i− 1), m 6 0− (l− 1)− (i− 0), l + m + i = 1,

l + m + i = 1. Simplifying the constraints yields a solution at l = 1, i = 1, m = −1.

Thus, the switch block contributes (or in this instance requires) −1 mixed equations. The

interpretation of the above is that the switch block may be reconciled provided that it appears

in a context containing at least 1 mixed equation.

Finally, consider the example dynamism3 where the weak approach is too permissive,

but, by contrast, the fair approach correctly rules out the switch block as irreconcilable:

dynamism3 : SR R

dynamism3 = sigrel x where

local u v

initially

u = v
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f u v = 0

when u + v < 0 ⇒
g x = 0

x = u

The initially branch consists of 2 local equations, whereas the when branch consists of

1 interface equation and 1 mixed equation. Clearly, with only a single mixed equation, it

should not be possible to account for the 2 local equations demanded by the reconciled

relation. Indeed, running the criteria over the above relation results in the constraints l > 2,

i > 1, and l + m + i = 2, implying that m 6 −1. However, there are no additional mixed

equations in the enclosing context, and criterion 5 insists that m must be non-negative when

checking the body of a signal relation. Hence, dynamism3 is rightly rejected.

5 A Structural Type System

This section constitutes the main technical contribution of the article, presenting and formal-

ising a type system for checking structural properties of equation-based languages. The type

system is developed for a modest language of equations embedded into the simply-typed

λ -calculus. Such an embedding reflects the two-tiered approach also used by FHM. The

type system includes polymorphic types, similar to those found in a Hindley-Milner-style

polymorphic system. However, here, polymorphic types are used to describe systems that

are somehow flexible in their equation structure. Fig. 3 gives the notational conventions used

throughout the remainder of this section.

Description Symbol

t λ -terms

v λ -values

x, y, z λ -variables

Γ contexts

q equation terms

qv equation values

sw switch blocks

sv switch values

u, v, w local signal variables

Description Symbol

τ functional monotypes

σ functional polytypes

ν equation types

µ constraint equation types

k kinds

n, m, o balance variables

C, D, E constraints

c, d constraint expressions

Fig. 3: Notational Conventions

5.1 Key Ideas

The fundamental idea behind the type system is to refine the type of a signal relation by in-

cluding structural information. Specifically, a balance is associated with each signal relation

type to indicate the number of equations that a signal relation contributes when used as a

component of a larger system of equations.

FHM is a language for higher-order modelling, permitting equation systems to appear as

parameters. As a result, the structural information required to compute an exact contribution
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is not necessarily known à priori. Hence signal relation types are generally parametric in

their balance, through a balance variable, allowing for polymorphic signal relations that

contribute a varying number of equations depending on the usage context.

However, the contribution of a signal relation (represented by a balance variable) is

subject to balance constraints (simply constraints from now on) dictated by the structural

criteria from Sect. 4. The context in which a signal relation is applied is used to generate the

constraints, which must be satisfiable for a type to be valid. The constraints restrict the con-

tribution of a component to a contiguous interval. Constraints may involve the contributions

of several components, and are thus not directly associated with a single signal relation in

general, as will become clear in the following.

To illustrate, consider the refined type for resistor from Sect. 3.3. We adopt a syntax

similar to Haskell’s for type class constraints to express constraints on balance variables:

resistor : (n = 2) ⇒ Resistance → SR (Pin,Pin) n

Here, the balance variable n is constrained to the value 2. This can be verified by first flat-

tening the signal relation applications to obtain a set of 3 equations over 5 variables (note

that each Pin contains two variables), then removing one equation which must be used to

solve for the local variable u, giving a net contribution of two equations.

Note that a representation of expressions containing integers and linear inequalities has

been introduced at the type level. This extension may appear to be a restricted form of

dependent types [19]. However, these type level representations, whilst determined by the

structure of terms, are not value-level terms themselves. Hence, we do not consider our

system to be dependently typed.

At this point, it is useful to consider the meaning of constrained types. Intuitively,

t : C ⇒ τ means that if it is possible to find a valuation for all balance variables such

that the constraints in C are satisfied, then τ is a valid type for the term t. As an example,

consider the contrived type:

(2 6 m 6 4,3 6 n 6 5) ⇒ SR m → SR n

This can be viewed as the type of a signal relation parametrised on a signal relation. The

following types are all examples of valid instances of the above:

(m = 2,n = 3) ⇒ SR m → SR n

(m = 4,n = 4) ⇒ SR m → SR n

(m = 3,4 6 n 6 5) ⇒ SR m → SR n

An appropriate way to think of a signal relation parametrised on signal relations is that it is

required to accept relations with any specific balances as long as the associated constraints

are satisfied, and that once applied to relations with appropriate balances is capable of con-

tributing a number of equations within bounds defined by the remaining constraints.

The power and utility of the type refinements can be seen in the examples given below.

The examples define higher-order combinators over two-pinned circuit components, giving

rise to refined types that are parametric in the resultant contribution. The combinators define

serial and parallel composition of two-pinned circuit components. The visual representation

in Fig. 4 shows the topological structure that is captured by the two combinators. In both

cases, 4 new pins, p1, p2, n1, and n2 are created internally to wire together the components,

where the naming conventions p and n refer to the positive and negative pins of a component,

respectively. In Hydra, the internal pins correspond to new local variables. The equations in



17

Fig. 4: Serial (top) and parallel (bottom) composition of two-pinned circuit components.

parallel and serial are then just applications of the subcomponents along with Kirchhoff’s

first and second laws for electrical circuits [18]:

parallel : SR (Pin,Pin) → SR (Pin,Pin) → SR (Pin,Pin)
parallel sr1 sr2 =

sigrel (p,n) where

local p1 p2 n1 n2

sr1 ⋄ (p1,n1)
sr2 ⋄ (p2,n2)
p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v
n.v = n1.v
p1.v = p2.v
n1.v = n2.v

serial : SR (Pin,Pin) → SR (Pin,Pin) → SR (Pin,Pin)
serial sr1 sr2 =

sigrel (p,n) where

local p1 p2 n1 n2

sr1 ⋄ (p1,n1)
sr2 ⋄ (p2,n2)
− p.i + p1.i = 0

n1.i + p2.i = 0

n2.i − n.i = 0

p.v = p1.v
n1.v = p2.v
n2.v = n.v

Upon applying the constraint criteria from Sect. 4 to compute the refined types, it tran-

spires that parallel and serial share the same constraints, and thus, the same refined type.

This give us some reassurance that the type system is imposing sensible constraints: the two

circuits are connected in different ways, with different equations describing the composition,

but in both cases we arrive at the same “composition constraints”:
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parallel,serial : (o = n + m − 2,0 6 o 6 4) ⇒
SR (Pin,Pin) n → SR (Pin,Pin) m → SR (Pin,Pin) o

Note that in both cases there are 8 local variables (as each pin constitutes two variables) and

6 atomic equations that can be used to solve for them, meaning that the two signal relation

applications at least have to contribute two more equations.

The constraints are also parametric in n, m, and o. Hence, they may be safely instantiated

to any set of values satisfying these constraints, for example: {n 7→ 1,m 7→ 2} or {n 7→
3,m 7→ 3}. For further reassurance, consider using parallel to compose two resistors. The

refined type of the composition admits the same constraints as the resistor component in

isolation, i.e. the composition of two resistors is, as expected, just another resistor:

parRes : (n = 2) ⇒ SR (Pin,Pin) n

parRes = parallel (resistor 1000) (resistor 2200)

The goal of a type checker is not merely to accept well-typed programs, but also to

reject certain ill-formed programs as ill-typed. The definition broken given below is such a

program. The program is flawed in that there is no relation to which it can safely be applied.

The relation sr must contribute at least 3 equations for the local variables {u,v,w,x} (the

forth being accounted for by the local atomic equation), but must not exceed a contribution

of 2 equations as dictated by the second application. Consequently, our type system detects

this by attempting to generate inconsistent constraints. Note that this program would happily

be accepted by the unrefined type system.

broken : (...,n 6 2,n > 3, ...) ⇒ SR Pin n → SR Pin m

broken sr = sigrel (a,b) where

local u v w x

sr ⋄ (u + v,w + x)
sr ⋄ (a,b)
v + x = 0

5.2 An FHM Core Language

One of the primary goals of this article is to formalise the intuition of the type system

discussed earlier in this section. A prerequisite to formalising such a system is to make

precise the object language of study. Figures 5–8 define such a language, an FHM core

language, which shall be used as the basis for metatheoretical study of our refined type

system throughout the remainder of the article.

However, to allow us to focus on the structural aspects of the type system, the core

language has been simplified compared with what would be needed for actual modelling.

Thus, the core language deviates from the description of FHM and Hydra given in Sect. 3 in

a number of ways. Most notable is the exclusion of signal-level constructs and signal types.

Whilst this exclusion might seem like a major departure from Hydra, the refined type system

is only concerned with the kind of equations and signal relation applications that arise in

an equation system, information that can easily be determined prior to type checking. The

core language is also based upon the simply-typed λ -calculus rather than Haskell. However,

as we shall see, the type system also shares many similarities with Hindley-Milner-style

polymorphic calculi [20].
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The types in the core language are grouped into three categories: monotypes (τ), poly-

types (σ ), and equation types (µ,ν), see Fig. 5. The monotypes describe the simple function

spaces and signal relation types, which are monomorphic in any balance variables. This

small set of monotypes would be far richer in a real implementation, but is kept minimal

for the sake of formalisation. Dispensing with signal-level values also means that signal re-

lation types need now only be parametrised on a balance (rather than signal-level type and

balance), eliminating the need to represent signal types in the core language at all.

Polytypes allow balance variables occurring in monotypes to be bound. This is very sim-

ilar to the notion of binding of type variables found in Hindley-Milner-style type systems.

The definition of polytypes is also a convenient place to introduce constraints on monotypes.

Equations in Hydra are essentially untyped, requiring only that their components be

well-typed where appropriate. However, in the core language it is necessary to introduce

simple equation types (ν) for the sake of constraint tracking. Equation types indicate the

number of local, mixed, and interface equations that a compound equation (i.e., system of

equations) contains. A numeric literal is not sufficient to describe the contribution, as an

equation may contain elements whose contribution cannot be determined statically, for ex-

ample the application of a signal relation introduced by a λ -abstraction. Thus, it is important

to recognise that these expressions can only be approximations of the actual contribution.

The category µ associates an equation type with constraints that may be inherited from any

signal relations being applied within the compound equation.

σ ::= polytype:

∀ n . σ quantified type

C ⇒ τ constrained type

τ ::= monotype:

τ1 → τ2 function space

SR n signal relation

µ ::= equation type:

C ⇒ ν constrained equation

ν ::= simple equation:

Eq c1 c2 c3 equation

Fig. 5: Types.

The syntax of constraints is given in Fig. 6. Constraint expressions (c) are essentially

〈Z,+〉: the group of integers closed under addition. This makes it easy to normalise and

compare expressions, which is essential for determining type equality. A minimal language

of constraints (C) provides inequality and conjunction. Equality constraints c1 = c2 are

translated to c1 6 c2,c2 6 c1, while the shorthand notation c1 6 c2 6 c3 is expanded to

c1 6 c2,c2 6 c3.

Type equality for monotypes is syntactic. Equality of polytypes is up to α-renaming of

bound balance variables and equality of any constraints. Two constrained monotypes are

equal when their constraints agree on the intervals of each balance variable. See section 5.6

for a discussion on our present approach to checking constraint equality.

Finally, the syntax of core terms and values are given in Fig. 7 and Fig. 8, respectively.

As the simply-typed λ -calculus has been chosen as a template for the core language, the

functional-level terms (t) contain the expected λ -terms: variables, function abstraction, and

function application. Let bindings are introduced to allow us to generalise balance variables,

Hindley-Milner style, allowing for polymorphic balance. To keep the system focused on

balance aspects, no other polymorphism is supported. It would be straightforward to add

support for other forms of polymorphism.
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Γ ::= context:

• empty

Γ ,x : σ extension

C ::= constraint:

ε empty constraint

c1 6 c2 expression inequality

c1,c2 constraint conjunction

c ::= constraint expression:

n balance variable

zero zero

succ c successor

c1 + c2 addition

− c negation

Fig. 6: Contexts and constraints.

The abstraction over the signal-level is evident in the sigrel construct where the pattern

introducing the bound variables has been replaced by two natural numbers, i and l, giving

the number of interface variables and local variables in scope, respectively. While we are no

longer concerned with the binding of signal-level variables, it is still necessary to keep track

of the number of interface and local variables for the purpose of generating and checking

constraints. Local variables are thus accounted for explicitly in the core calculus. Addition-

ally, the number of local variables will increase in a non-trivial way during evaluation. Care

is taken in the semantics to correctly account for this non-standard reduction behaviour.

Rather than being eliminated due to substitution, local variables are instead propagated up

and aggregated in the top level signal relation.

The most important simplification compared with Hydra can be seen in the productions

for equations (q). Instead of classifying equations according to what signal variables occur

in them as part of the type system, equations are classified directly by labelling them with

a kind: local, mixed, or interface. This simplification makes our presentation of the type

system substantially clearer, without compromising on any of the fundamental concepts of

FHM as the labelling can easily be carried out prior to type checking.

Equations may also take the form of a switch block (sw). The syntax of switch blocks

defines a non-empty list of equations, with the initially active branch tagged by the keyword

initially. In Hydra (Sect. 3.4), each when-branch carries a signal expression that provides

the condition for activating the branch. As the core language is not concerned with signal-

level expressions, this condition is omitted from the syntax. Figure 9 illustrates how Hydra

is mapped into the core lanuage.

t ::= functional term:

x λ -bound variable

t1 t2 application

λ x . t1 abstraction

let x = t1 in t2 let binding

sigrel i l where q signal relation

sw ::= switch block:

initially q initial branch

sw when q conditional branch

q ::= equation term:

atomic k atomic equation

t ⋄ k sig. rel. application

q1 ∧ q2 pairing

sw switch block

k ::= equation kind:

local local equation

mixed mixed equation

interface interface equation

Fig. 7: Terms.

The next section gives a small-step reduction semantics for the core language. This

semantics depends on the definition of values, which describe terms that have been reduced
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v ::= functional value:

λ x . t abstraction

sigrel i l where qv signal relation

qv ::= equation value:

atomic k atomic equation

qv1 ∧ qv2 pairing

sv switch block

sv ::= switch value:

initially qv initial branch

sv when q conditional branch

Fig. 8: Values.

parallel sr1 sr2 = sigrel (p,n) where

local p1 n1 p2 n2

sr1 ⋄ (p1,n1)
sr2 ⋄ (p2,n2)
p.i + p1.i + p2.i = 0

n.i + n1.i + n2.i = 0

p.v = p1.v
n.v = n1.v
p1.v = p2.v
n1.v = n2.v

(a) Hydra: parallel composition

parallel = λ sr1 . λ sr2 . sigrel 4 8 where

sr1 ⋄ local ∧
sr2 ⋄ local ∧
atomic mixed ∧
atomic mixed ∧
atomic mixed ∧
atomic mixed ∧
atomic local ∧
atomic local

(b) Core: parallel composition

icDiode = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
initially;when p.v − n.v > 0 ⇒

u = 0

when p.i < 0 ⇒
p.i = 0

(c) Hydra: ideal diode

icDiode = sigrel 4 1 where

twoPin ⋄ mixed ∧
initially

atomic local

when

atomic local

when

atomic interface

(d) Core: ideal diode

Fig. 9: Comparison of Hydra and Core.

as far as is desirable. The body of an abstraction value is a term, meaning that reduction is

not performed under binders. This is desirable, as it means open values (values containing

free variables) need not be considered. Furthermore, equation values need not contain a

production for signal relation applications, as all relation applications will be eliminated

from a closed term. Finally, switch values only insist that the initially branch be an equation

value, as this is the only active branch at the start of simulation. Should a branch condition

fire, causing that branch to be switched and the the previously active branch to be switched

out, this new branch will be treated as initial, and evaluated before simulation resumes.

5.3 Semantics

Meaning is ascribed to the core language via a small-step reduction semantics [29] given in

Fig. 10. The semantics consist of two relations that describe the valid individual reductions
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for terms and equations. The reflexive transitive closure of these relations can then be taken

as the sequences of valid reductions from terms to values.

The relation t1 −→ t2 gives meaning to terms, stating that the term t1 reduces to the

term t2 in one step. The relation q1
l

−→ q2 relates three objects, stating that the equation q1

reduces to the equation q2 in one step, introducing l new local variables in the process. If the

semantics were to account for bound signal variables individually, such a reduction would

have the form ∆ ⊢ q1 −→ ∆ ,Σ ⊢ q2, describing the reduction of an equation q1 in the

local variable context ∆ , to the equation q2 in the local variable context ∆ extended by a set

of new local variables Σ .

t1 −→ t2

t1 t3 −→ t2 t3
(S-APP1)

t1 −→ t2

v t1 −→ v t2
(S-APP2)

(λ x . t) v −→ [x 7→ v] t
(S-APPABS)

q1
l2−→ q2

sigrel i l1 where q1 −→ sigrel i (l1 + l2) where q2

(S-SIGREL)

t1 −→ t2

let x = t1 in t3 −→ let x = t2 in t3
(S-LET)

let x = v in t −→ [x 7→ v] t
(S-LETV)

t1 −→ t2

t1 ⋄ k
0

−→ t2 ⋄ k
(S-RAPP)

(sigrel i l where qv) ⋄ k
l

−→ qv ↓ k
(S-RAPPABS)

q1
l

−→ q3

q1 ∧ q2
l

−→ q3 ∧ q2

(S-PAIR1)
q1

l
−→ q2

qv ∧ q1
l

−→ qv ∧ q2

(S-PAIR2)

q1
l

−→ q2

initially q1
l

−→ initially q2

(S-INITIAL)
sw1

l
−→ sw2

sw1 when q
l

−→ sw2 when q
(S-WHEN)

Fig. 10: Small step semantics.

There are no surprises regarding the reduction rules for λ -terms, with S-APP1, S-APP2,

S-APPABS, S-LET, and S-LETV describing the normal rules for a call-by-value λ -calculus

with let-expressions. A signal relation may undergo a step of reduction by reducing the

equation that it contains (S-SIGREL); the current set of local variables (l1) must also be

extended with any new local variables that result from this equation reduction (l2).

The left branch of an equation pair is reduced first, with the right branch being reduced

only after a value is found for the left, as dictated by the rules S-PAIR1 and S-PAIR2. This

ordering is arbitrary, but necessary for a deterministic semantics.

A deterministic reduction strategy for ⋄ is achieved by first reducing the term being

applied. This does not bring any new local variables into scope (S-RAPP). Once the left-

hand side of ⋄ has been reduced to a signal relation value, the application is reduced to

the equation values contained within the relation (S-RAPPABS). If the signal level were

not treated in the abstract, the signal expression appearing to the right of ⋄ would need

to be substituted into the body of these equations. However, the casting of equation kinds

(↓ below) reflects aspects of this substitution. Finally, the new local variables brought into

scope by this reduction step are the local variables declared within the signal relation value.
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Note in the rule S-RAPPABS how the equations from within the applied signal relation

are transformed by the function ↓ to bring them into the enclosing context. This transforma-

tion is included to keep the notion of equation kinds in line with the kinds expected by the

enclosing relation. As discussed previously, the constrained types are necessarily approxi-

mations of the actual structure of the flattened system of equations. As reduction proceeds,

new information about the flattened structure becomes available, specifically, information

regarding the precise kinds of each equation contained with a signal relation abstraction.

atomic local ↓ k = atomic local

atomic mixed ↓ k = atomic mixed

atomic interface ↓ k = atomic k

qv1 ∧ qv2 ↓ k = (qv1 ↓ k) ∧ (qv2 ↓ k)
initially qv ↓ k = initially (qv ↓ k)
sv when q ↓ k = (sv ↓ k) when q

The function ↓ is thus not an abstraction of substitution of signal-level variables from the

enclosing context into the equations of the applied signal relation, except that local equations

must remain local because they are not affected by substitution (as no interface variables

occur in them) and because they are not included in the balance of the applied signal relation.

Mixed equations also remain mixed to retain an optimistic view that they still might be used

to solve for any variable, including interface variables in a larger enclosing context, or local

variables from the initial context in which the equation was defined.

The initially branch of a switch is the only branch that will be active at the start of

simulation. Thus, the semantics of initially and when are only concerned with reducing the

equations within this initial branch.

5.4 Typing Rules

The type system is defined through three relations (Fig. 11). We have opted for a declarative

presentation: in particular, our approach describes polymorphic aspects of the system using

non-deterministic generalisation and instantiation rules in the spirit of the original paper

by Milner [20]. The algorithm used to compute types in our system is omitted here as it is

essentially the standard algorithm: see Sect. 5.6 for a brief discussion, or the supporting im-

plementation for details [6]. Alternatively, we could have taken the approach found in Pierce

[28], making type reconstruction constraints appear explicitly in the rules. However, we felt

that this obfuscated the presentation by hiding the important details of the type refinements.

The nature of the type system also requires a number of simple type-level computations to

be performed for which we define ancillary functions.

The relation for checking λ -terms is denoted by Γ ⊢ t : σ , stating that a term t has

the type scheme σ in the typing context Γ . Similarly, the relation Γ ⊢q q : µ states that

an equation q has the constrained equation type µ in the context Γ . Equations require the

functional typing context Γ as terms may appear in equations (to the left of ⋄).

The rules for variables (T-VAR), application (T-APP), abstraction (T-ABS), and let (T-

LET) are the normal rules of the simply-typed λ -calculus with additional plumbing to handle

the accumulation of constraints. Type checking signal relations (T-SIGREL) requires slightly

more attention, using the type of the equations contained within the relation to generate a

new set of constraints against the fresh balance variable n. The free function is responsible

for ensuring that the new balance variable n does not already appear free in the context.
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The rules for typing equations suggest a simple algorithm for traversing a tree of equa-

tions and accumulating the number of local, mixed, and interface equations that a com-

pound equation is capable of contributing, whilst simultaneously aggregating constraints

from applied signal relations. The strategy can be seen in the rule for relation application

(T-RELAPP): given a relation of type SR n (i.e. a signal relation contributing n equations),

create an equation type contributing n equations of kind k using the kind helper function.

Typing switch blocks is a matter of typing the equation fragments at each branch, and

then reconciling these types using the approach outlined earlier in Sect. 4.3. Rather than

considering all the branches at once, the typing rules provide a syntax-directed approach

that reconciles each when branch with the remaining branches of the switch.

The instantiation (T-INST) and generalisation rules (T-GEN) allow types to be instanti-

ated or generalised with respect to their balance variables, respectively. Instantiation insists

that the new type be more specific according to the ordering relation ⊑. Generalisation

allows a free balance variable to be bound, provided that it does not appear free in the en-

vironment. Note the strong correspondence between our notion of balance variables and the

notion of type variables found in other Hindley-Milner-style systems.

x : σ ∈ Γ

Γ ⊢ x : σ
(T-VAR)

Γ ⊢ t2 : D ⇒ τ1

Γ ⊢ t1 : C ⇒ τ1 → τ2

Γ ⊢ t1 t2 : C,D ⇒ τ2

(T-APP)

Γ ,x : ε ⇒ τ1 ⊢ t : C ⇒ τ2

Γ ⊢ λ x . t : C ⇒ τ1 → τ2
(T-ABS)

Γ ⊢ t1 : C ⇒ τ1

Γ ,x : C ⇒ τ1 ⊢ t2 : D ⇒ τ2

Γ ⊢ let x = t1 in t2 : D ⇒ τ2
(T-LET)

Γ ⊢q atomic k : ε ⇒ kind (k,1)
(T-ATOMIC)

Γ ⊢ t : C ⇒ SR n

Γ ⊢q t ⋄ k : C ⇒ kind (k,n)
(T-RELAPP)

Γ ⊢q q1 : C ⇒ ν1

Γ ⊢q q2 : D ⇒ ν2

Γ ⊢q q1 ∧ q2 : C,D ⇒ ν1 ⊕ ν2

(T-PAIR)

C = cons (ν ,n, i, l)
Γ ⊢q q : D ⇒ ν fresh (n)

Γ ⊢ sigrel i l where q : C,D ⇒ SR n
(T-SIGREL)

D = conssw (Eq l m i,ν)
Γ ⊢q q : C ⇒ ν fresh (l,m, i)

Γ ⊢sw initially q : C,D ⇒ Eq l m i
(T-INITIAL)

Γ ⊢q q : D ⇒ ν2

Γ ⊢sw sw : C ⇒ ν1

E = conssw (ν1,ν2)

Γ ⊢sw sw when q : C,D,E ⇒ ν1
(T-WHEN)

Γ ⊢ x : σ1 σ1 ⊑ σ2

Γ ⊢ x : σ2
(T-INST)

Γ ⊢ t : σ n /∈ free (Γ )

Γ ⊢ t : ∀ n . σ
(T-GEN)

Fig. 11: Typing rules.

The final matter that requires attention are the various ancillary functions used in the

typing rules. The function free is left abstract, but it just returns the set of free variables

of a context. The (pseudo) predicate fresh is also left abstract: it simply enforces that new

variables are picked to prevent unintended interference with variables already in use. The

operator ⊕ is used in T-PAIR to aggregate the contributions of two simple equation types:

(Eq c1 c2 c3) ⊕ (Eq d1 d2 d3) = Eq (c1 + d1) (c2 + d2) (c3 + d3)
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The cons and conssw functions are responsible for generating constraints, as discussed

in Sect 4. The signature of cons requires an equation type ν , a fresh balance variable n, and

the number of interface variables i and local variables l. The conssw function requires two

equation types ν1 and ν2 to be reconciled:

cons (Eq iQ mQ lQ,n, iZ, lZ) =
n = iQ + mQ + lQ − lZ ,
n 6 iZ,
iQ 6 iZ,
lQ 6 lZ 6 lQ + mQ,
iQ > 0,mQ > 0, lQ > 0

conssw (Eq l m i,Eq lk mk ik) =
l > lk > 0,
i > ik > 0,
m 6 mk − (l − lk) − (i − ik),
l + m + i = lk + mk + ik

The kind function provides a convenient method for constructing equation types with a

given contribution and of a particular kind:

kind (local, c) = Eq 0 0 c

kind (mixed, c) = Eq 0 c 0

kind (interface,c) = Eq c 0 0

Finally, we define the ⊑ predicate with the rule given below. The rule ensures that no free

variables occuring in the monotype become bound by a quantifier, but existing quantifiers

may be replaced by new types, including types that introduce new balance variables:

τ2 = [αi 7→ τi ] τ1 fresh (βi)

∀ α1 ... ∀ αn . τ1 ⊑ ∀ β1 ... ∀ βm . τ2

5.5 Metatheoretical Properties

The soundness of a type system is often specified via two properties: progress and preserva-

tion (also referred to as subject reduction). A type system has progress if, for every closed,

well-typed term t, either t is a value or else there is some t′ for which t −→ t′. A type system

has subject reduction if evalution of an expression preserves the type of that expression [28].

In our setting, preservation of refined types does not hold. While this might come as a

surprise, and may seem indicative of underlying problems, it is actually entirely unsurprising

given our objectives. As has been discussed throughout this article, the type refinements we

propose are only an approximation for detecting anomalies that would definitely lead to a

structurally singular system of equations. Hence, in Hydra, there are modular systems of

equations where the fact that they are structural singular only become apparent once they

have been completely flattened. In other words, during the process of evaluation, a Hydra

program may not necessarily remain structurally well-formed (Sect. 4.1) according to our

refinements (but it will remain well-typed). This is expected: the main point is that the

refined type system enables many mistakes to be caught early.

The lack of subject reduction is due entirely to the type refinements. Therefore, we shall

show that progress and preservation does hold for the unrefined system. Such a proof —

which is a new, albeit minor, contribution of this article — gives us some reassurance that

the foundations of our system are sound.

Rather than define a new set of typing rules we instead choose to work with erased types;

the additions made to the type system by our refinements are essentially ignored. Specifi-

cally, we erase constraint sets, balance variables on signal relations (SR), and constraint

expressions on equations (Eq).
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Progress can be defined formally as follows: given t where ⊢ t : τ , then either t is a

value, or ∃ t′ . t −→ t′. The proof proceeds by induction on the typing derivations (see

Fig. 11). We will omit proofs where they do not differ from the standard (and well known)

approach to proving soundness of the simply-typed λ -calculus [28].

1. T-ATOMIC: Trivial, atomic equations are values.

2. T-RELAPP: By the induction hypothesis, either there exists a t′ such that t −→ t′, or

t is a value. In the first case, the rule S-RAPP simply applies. If t is a value, then by

canonicity is must be a sigrel, in which case S-RAPPABS applies.

3. T-PAIR: By the induction hypothesis, both q1 and q2 may be either values or may take

a step of evaluation. If q1 can take a step, then S-PAIR1 applies. If q1 is a value, and

q2 may take a step, then S-PAIR2 applies. If both q1 and q2 are values, then the entire

expression is a value.

4. T-SIGREL: If the hypothesis q may take a step then the rule S-SIGREL applies. If q is a

value, then the expression as a whole is a value.

5. T-INITIAL: As above, S-INITIAL applies when q is a value.

6. T-WHEN: As above again, S-WHEN applies when sw is a value. ⊓⊔

Preservation is defined formally as: given t, such that Γ ⊢ t : τ , and t −→ t′, then

Γ ⊢ t′ : τ . This proof proceeds by induction on the reduction step t −→ t′. As before,

preservation proofs about the λ -calculus are omitted where they do not differ.

1. S-SIGREL: The induction hypothesis states that Γ ⊢q q1 : ν , and Γ ⊢q q2 : ν . By inver-

sion of the rule T-SIGREL, we can deduce that ν is an equation type, and by extensions

must be Eq. Thus, using T-SIGREL again directly on the left- and right-hand side, we

can deduce the type SR for both.

2. S-RAPP: The induction hypothesis gives us Γ ⊢ t1 : τ , and Γ ⊢ t2 : τ . By inversion

of T-RELAPP, τ = SR, and hence by application again of T-RELAPP, both sides agree

on the overall type Eq.

3. S-RAPPABS: Once again, we can decompose the hypothesis (sigrel i l where qv) ⋄ k

by inversion, resulting in qv : ν , and thus qv : Eq. The type Eq for the left-hand side

follows from the rules T-SIGREL and T-RELAPP successively.

4. S-PAIR1: Inversion of T-PAIR along with the induction hypothesis give a straightfor-

ward proof of preservation.

5. S-PAIR2: As above, commuted.

6. S-INITIAL: Follows from the induction hypothesis derived from q1 −→ q2 and inver-

sion of T-INITIAL.

7. S-WHEN: Follows from the induction hypothesis derived from sw1 −→ sw2 and inver-

sion of T-WHEN. ⊓⊔

The above correctness properties are not the only opportunity to validate our type sys-

tem, not least because they do not consider the type refinements developed in this article.

However, the most practically relevant such properties can only be stated in a setting of a

language that does not abstract away from which variables occur in which equations; i.e., a

language like Hydra, but unlike our core language. As we have not formalised Hydra or its

semantics in this article, we do not pursue this further here, but we will sketch the kind of

correctness properties we expect to hold, and why, in future work (Sect. 8).
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5.6 Implementation

We have implemented a prototype type checker for the type system described in this section.

It is implemented in the dependently-typed programming language Agda [26], thus ensuring

the totality and termination of the checker. The checker can infer refined types without the

need for any type annotations, meaning that the inference algorithm is also total in this sense.

The implemented inference algorithm operates in much the same way as Algorithm W with

regards to generating type schemes. Specifically, we make no contributions to type inference

and instead refer the interested reader to the supporting implementation for details [6].

As discussed in section 5.2, deciding type equality in part requires deciding the equality

of constraints. Our present implementation does this by using the Fourier-Motzkin Quan-

tifier Elimination algorithm [30], which determines a contiguous interval for each occur-

ring balance variable. This allows the equality of two constrained monotypes to be checked

by checking that the constraints agree on the intervals of each balance variable. Fourier-

Motzkin’s algorithm operates on linear systems of inequalities. Another alternative might

have been Collin’s Quantifier Elimination [11]. However, Collin’s algorithm targets poly-

nomial systems of inequalities which means that it may have higher time complexity that

Fourier-Motzkin’s algorithm. Thus, Fourier-Motzkin’s algorithm is the better choice for us.

Fourier-Motzkin elimination has worst case exponential time complexity in the number

of balance variables. However, as shown by Pugh [30], the modified variant that searches for

integer solutions is capable of solving most common problem sets in low-order polynomial

time. Furthermore, systems typically involve only a handful of balance variables, making it

feasible to check most cases where complexity is exponential in the number of variables.

6 Evaluation

We have carried out our development in the context of an abstract version of an FHM-

like, acausal modelling and simulation language, leaving out most aspects that were not

directly relevant to our specific purposes. We did this partly to keep things simple and allow

ourselves to focus on the core issues, and partly, as explained in the introduction, because

the ideas underpinning our type system could be useful for any language with a notion of

modular systems of equations.

However, this begs the question how we can evaluate what we have achieved insofar as

we at this point are not in a position to carry out any large usability studies. In this section,

we attempt to address that question in two ways. First, we position our work relative to

other work based on exploiting structural properties of systems of equations for which there

is independent evidence of usability. Second, we provide a fairly substantial case study that

covers all aspects of the language, including structural dynamism.

6.1 Structural Properties in the Wild

Based on years of practical experience, a notion of balance checking was considered to

be sufficiently useful to be incorporated into version 3.0 of the Modelica standard [21] in

2007. See Sect. 7.1 for a discussion of how Modelica compares to the work described in

this paper from the perspective of variable and equation balance. Here we just point out that

our system checks more fine-grained structural properties than Modelica as we distinguish

between different kinds of equations. This means our system is capable of catching a strictly
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Fig. 12: Half-wave rectifier with in-line inductor.

larger set of errors, and thus is no less useful than the system presently used in Modelica. A

concrete example is given towards the end of the case study in the next section. Additionally

our type-based approach scales to first-class equation fragments and structurally dynamic

systems of equations, features that may be commonplace in the next generation of acausal

modelling languages [32].

The work by Bunus & Fritzson [5], discussed in Sec. 7.3, lies at the other end of the

spectrum in terms of precision. Because they work on systems of equations after flattening,

Bunus et al. are able to perform a global analysis, which is much more detailed than our type

system, or Modelica’s balance checking, is capable of. For example, Bunus & Fritzon show

how their approach can identify specific equations as likely being the cause of a problem,

and even prioritize among a number of ways to address a problem. In essence, the key

difference is that Bunus & Fritzson do an analysis at the granularity of individual variable

occurrences, while we approximate this by considering occurrences of variables only at the

granularity of two different variable kinds: local and interface variables.

While Bunus and Fritzson’s approach does not support checking of components in iso-

lation, and is thus not a feasible starting point for a type system for modular equations,

their approach does demonstrate the practical utility of taking more fine-grained structural

properties into account than just the variable-equation balance.

In summary, in terms of “error finding power”, the type system presented in this paper

is somewhere between what currently is used in Modelica and the approach investigated

by Bunus and Fritzson, both of which empirically are useful for finding problems. Yet, our

type-based approach offer distinct advantages over both.

6.2 Case Study: Half-Wave Rectifier

To demonstrate the practical applications of the type system developed in this article, we

now present a case study. At this point, the reader may want to first review the examples

that were presented in Sect. 5.1. These demonstrated our type system at work, including

how it can catch certain mistakes. However, the examples were small and in some cases

also artificial. In contrast, this case study concerns a complete model of a half-wave rectifier

composed of a number of electrical components including, in particular, a diode: see Fig. 12.

We are going to model the diode as an ideal component (initially closed), resulting in a

structurally dynamic model. The model, borrowed from a paper on FHM [24] and originally

adapted from Cellier’s and Kofman’s book Continuous System Simulation [10, pp. 439-443],

raises particular simulation challenges as the in-line inductor causes the causality to change

when the model switches between the two different structural configurations (the ideal diode

is open or closed).
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Besides the diode, the half-wave rectifier includes a voltage source, an inductor, two

resistors, a capacitor, and a ground reference. The implementation of some of these compo-

nents, such as the resistor, can be found earlier in the paper. However, for convenience the

definition of each of these components is given below along with their refined types (with

trivially satisfied constraints omitted) and a brief justification for assigning each type.

First of all, recall the definition of twoPin, the abstraction that captures the common

aspects of electrical components with two pins:

twoPin : (n = 2) ⇒ SR (Pin,Pin,Voltage) n

twoPin = sigrel (p,n,u) where

p.i + n.i = 0

p.v − n.v = u

There are manifestly two equations and no local variables to solve for, so the net contribution

is two equations.

The alternating current voltage source is defined as follows, with the amplitude and

frequency given by the parameters v and f , respectively:

vSourceAC : (n = 2) ⇒ Voltage → Frequency → SR (Pin,Pin) n

vSourceAC v f = sigrel (p,n) where

local u

u = v ∗ sin (2 ∗ π ∗ f ∗ time)

Applying the constraint criteria to the voltage source component gives an overall contri-

bution of two equations. This contribution, along with the contributions of several of the

components to follow, is easily justified: an application of twoPin contributes two equa-

tions, while the atomic equation is reserved for solving the local variable u. Applying the

typing rules and then simplifying constraints yields the same result.

The resistor, inductor, and capacitor are defined as follows:

resistor : (n = 2) ⇒ Resistance → SR (Pin,Pin) n

resistor r = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
r ∗ p.i = u

inductor : (n = 2) ⇒ Inductance → SR (Pin,Pin) n

inductor i = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
l ∗ der p.i = u

capacitor : (n = 2) ⇒ Capacitance → SR (Pin,Pin) n

capacitor c = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
c ∗ der u = p.i

Like the voltage source, the relations that result from resistor, capacitor, and inductor (after

the application of any functional parameters) each contribute two equations for the reasons

given above. After all, from the perspective of our type system, the sets of equations that

constitute each component are essentially the same: an application of twoPin to a set of
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mixed variables, and an atomic equation. The only difference is that the atomic equation in

these cases is mixed.

The ground component, unlike previous components, is connected via only a single pin:

ground : (n = 1) ⇒ SR Pin

ground = sigrel p where

p.v = 0

Its purpose is to set a reference voltage level. Thus, the component is very simple: it contains

only a single equation and introduces no new local variables. Hence, our intuition would

dictate that the ground component contributes one equation as there are no local variables.

This is in agreement with the type assigned by our type system.

The final, and most involved component in the circuit is the initially closed, ideal diode:

icDiode : (n = 2) ⇒ SR (Pin,Pin) n

icDiode = sigrel (p,n) where

local u

twoPin ⋄ (p,n,u)
initially;when p.v − n.v > 0 ⇒

u = 0

when p.i < 0 ⇒
p.i = 0

The diode is a particularly interesting example as the type of equations contributed is de-

pendent upon the current structural configuration: initially, the switch block defines a local

equation, whereas the second branch defines an interface equation. This conflict is resolved

thanks to the fair policy (Sect. 4.3) employed when generating constraints for structurally

dynamic code. The two branches of the switch block are reconciled by demanding that a

mixed equation is present in the enclosing context. In other words, the switch block con-

tributes 1 interface equation, 1 local equation, and -1 mixed equation. Thus, the net contri-

bution of the diode is two: 2 mixed equations from the application of twoPin and 1 equation

from the switch block, 1 of which must be used to solve for the local variable. At this point,

it is worth noting that the strong approach would be too restrictive: the contributions from

the different branches are clearly not identical.

The complete half-wave rectifier can now be described as follows:

halfWaveRectifier : (n = 0) ⇒ SR () n

halfWaveRectifier = sigrel () where

local lp ln rp1 rn1 rp2 rn2

local dp dn cp cn acp acn gp

resistor 1.0 ⋄ (rp2,rn2)
icDiode ⋄ (dp,dn)
capacitor 0.0 ⋄ (cp,cn)
vSourceAC 1.0 1.0 ⋄ (acp,acn)
ground ⋄ gp

connect acp lp

connect ln rp1

connect rn1 dp

connect dn cp rp2

connect acn cn rn2 gp
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The rectifier is a non-trivial example, consisting of seven subcomponents, many of which

have subcomponents of their own. However, if one follows the typing rules, it is a straight-

forward matter to construct the appropriate type. There are total of 26 local variables (recall

that each pin contains two variables) and by no coincidence, the body of the relation contains

a total contribution of 26 equations. Note that the connect keyword is used as a shorthand

for Kirchhoff’s circuit laws, where connect p1 ... px desugars to x atomic equations: a sum-

to-zero equation and x − 1 voltage equalities.

The type system does not merely guarantee that the model is balanced, it strengthens the

claim by imposing additional constraints that are also satisfied. For example, suppose the

programmer made an error in the implementation of diode: instead of applying twoPin to a

mixed set of variables (i.e. twoPin ⋄ (p,n,u)), the application was instead made to a set of

interface variables (i.e. twoPin ⋄ (p,n,0)). In a setting with a fair number of both interface

and local variables it is entirely plausible that such an error might go unnoticed. This mistake

would mean that there are no mixed equations to satisfy the -1 mixed equation requirement

of the switch block. Interestingly, if one were to only count variables and equations, without

any notion of equation kinds (see related work, Sect. 7.1 and Sect, 7.2), the aforementioned

error would not be detected. Furthermore, in our system this error would be detected early

while type checking icDiode, and not only once the full model has been assembled.

7 Related Work

Equation-based modelling is a broad and varied topic. In this section, the most relevant work

relating to static checking of structural properties is reviewed and compared with our own.

7.1 Modelica

Modelica is an industrial-strength, equation-based language for acausal modelling of hybrid

systems. The language design draws heavily from concepts in object-oriented programming

with notions like classes and inheritance used to structure the models. As of version 3.0 of

the Modelica specification [21, pp. 43–48, p. 270] models are required to be locally bal-

anced. A model is locally balanced if it locally declares or inherits the same number of vari-

ables and equations. No attempt is made to classify equations depending on whether the vari-

ables occurring in them are local or not. Moreover, the language specification only requires

checking of the local balance once specific values of parameters are known. The number of

variables and equations may depend on the constants through conditional selection among

blocks of equations and array sizes. The possibility of checking that a model is locally bal-

anced for all possible values of the parameters is left as a “quality-of-implementation” issue.

Compared to our approach, Modelica is quite restrictive: there are good reasons for why

certain components need to be locally unbalanced, and then used as building blocks of larger

systems that ultimately will be balanced. For this reason, Modelica allows components to be

marked as partial, thereby disabling balance checking (in isolation) for those components.

Modelica also lacks a notion of true first-class models: there are methods for parametrising

models on other models, but these do not approach the generality of FHM. However, this

does mean that checking balances late, once parameters are fully known, suffices in the

case of Modelica. Furthermore, because Modelica does not classify equations depending

on which variables occur in them, the class of structural properties checked by Modelica is

smaller than that covered by our type system (see Sect. 4).
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7.2 Broman, Nyström & Fritzson

Broman et al. [4] developed a more flexible approach to modular balance checking than

the approach described by the current Modelica specification [21] (to which it is a precur-

sor). Most notably, models are not required to be locally balanced provided that the fully

assembled system is balanced. The type system, dubbed Structural Constraint Delta (C∆ ), is

developed for a subset of Modelica called Featherweight Modelica.

The core idea behind C∆ is to refine the notion of type equality such that two models are

equal only if they are equal under the Modelica interpretation (see [21]) and have the same

variable-equation balance. This idea is extended to a subtyping relationship where S <: C

holds only when S is a Modelica subtype of C, and S and C have the same variable-equation

balance. This refinement is motivated by the principle of safe substitution; in this instance,

stating that it is only safe to replace one class by another if the replacement preserves the

global balance of a system.

The refined notion of type equality is realised by annotating the type of a class with the

difference, C∆ , between the total number of defined equations and variables. The annotation

is a concrete value as Featherweight Modelica classes are not first-class entities: the infor-

mation required to compute the annotation is always manifest in the structure of the object

being analysed. Hence, the C∆ may always be computed in a bottom-up fashion.

By contrast, the type system discussed in Sect. 5 lifts a number of restrictions inherent to

C∆ . Our approach permits first-class models. Hence, we do not rely on manifest type infor-

mation as the structure of a model may be partially or even completely unknown. Further-

more, parameterised models are parameteric in their balance; a model may be instantiated

with different values for its parameters, resulting in distinct balances for each usage of the

model within the same context.

As with Modelica, the approach taken by Broman is strictly balance oriented. In contrast,

our system captures some structural properties beyond simple balance. For example, signal

relations are valid only when they do not over- or under-constrain their local variables.

To our knowledge, the idea of incorporating balance checking into the type system of a

non-causal modelling language was suggested independently by Nilsson et al. [25,22] and

Broman et al., with the latter giving the first detailed account of such an approach.

7.3 Bunus & Fritzson

Bunus & Fritzson [5] describe a static analysis technique for pinpointing problems with

modular systems of equations developed in equation-based languages such as Modelica. The

primary motivation for their work is to develop effective debugging techniques for equation

systems. They are concerned with structural properties, as we are, but, allowing systems to

be flattened before analysis grants them the capacity to perform a much more fine-grained

localisation of problems. In essence, viewing the flattened system as a bipartite graph (the

nodes being the equations on the one hand and the occurring variables on the other), they

attempt to put the equations in a one to one correspondence with variables occurring in

them by performing a Dulmage-Mendelsohn canonical decomposition. This will partition

the system into a well-constrained part (a one to one correspondence is possible), an over-

constrained part (too many equations), and an under-constrained part (too many variables).

If the latter two parts are empty, the system as a whole is structurally well-constrained.

The main contribution of the work is the localisation and reporting of program errors in

a method consistent with the programmers perception of the system. An efficient technique
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for annotating equations for future analysis is also outlined. The methods discussed are

robust, even in the face of program optimisations that may change the intermediate structure

of the modular system of equations. Bunus & Fritzson implemented a prototype of their

tool, attached to the MathModelica simulation environment, and evaluated the usability of

their system in that setting. A case study is presented in their paper.

Because the methods outlined are intended to be used after a modularly constructed sys-

tem has been flattened, the methods are in many ways complimentary to the type system

presented in this article. The methods could even be performed during simulation, making

them potentially very useful for analysis of iteratively-staged, structurally-dynamic systems

[15]. In any case, the work by Bunus & Fritzson illustrates the benefits from going beyond

basic balance checking for finding problems with systems of equations. Some of those ben-

efits are also realised by our system thanks to the classification of equations into different

kinds depending on the variables that occur in them; i.e., an approximation of individual

variable occurrences.

7.4 Furic

Furic [13] proposes a novel approach for model composition for Modelica with improved

guarantees of compositionality. A notion of variable and equation balance is central to this.

Like in the approach adopted by Modelica, no classification of equations is made depending

on whether occurring variables are local or not. Furic’s balance checking algorithm works

on a physical connection graph describing the structure of an assembled system. Its present

formulation is thus not modular. However, Furic suggests that the additional syntactic in-

formation that the proposed approach makes available could form a basis for a type system

for enhanced static checking and separate compilation. Interestingly, Furic’s approach sup-

ports a much more flexible notion of structural dynamism than Modelica does at present.

However, this hinges on either pre-enumerating all configuration for checking purposes, or

running the checking algorithm at each structural change during simulation.

Despite being quite different from our type-based approach, Furic’s work underscores

the practical importance of enforcing constraints on the variable and equation balance for

modularly constructed systems of equations. Moreover, his approach to composition offers

a number of advantages over Modelica’s, and it would be interesting to see if it can be recast

into a type-based approach, and maybe even adapted to the FHM setting.

7.5 Nilsson

The work by Nilsson [22], which is a precursor to this work, outlines an approach to static

checking that makes stronger guarantees about the structure of equations and variables be-

yond that of simple balance. In many cases, Nilsson’s structural types are able to rule out

systems with structural singularities that would otherwise be accepted under a simple bal-

ance checking approach. As with the system developed in this paper (Sect. 5), Nilsson de-

velops his approach for the FHM framework.

The incidence matrix of a system of equations represents the occurrences of variables

in equations. By approximating incidence matrices in the types of signal relations and equa-

tions, Nilsson approaches the capabilities of Bunus and Fritzson’s technique [5], while re-

taining the capability of checking fragments in isolation. Partitioning equations into classes
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depending on whether the occurring variables are local or interface or both is central to

Nilsson’s approach and led to the notion of equation kinds in this paper.

Nilsson’s work is a preliminary investigation into structural types. It does not consider

first-class models, and it is not clear that it would be possible to generalise the method to

a first-class setting while retaining the precision of the types. Structurally dynamic systems

are considered, but only briefly. The time complexity of the given algorithm to compute

structural types is also a concern as it relies on partitioning the set of mixed equations in

all possible ways. Moreover, the the flip-side of the precision of the types is that they may

be hard to understand and cumbersome to use in practice. Suitable methods by which to

communicate type errors to the programmer would also have to be investigated, although

the paper does suggest that the work by Bunus & Fritzson could provide a good starting

point. By contrast, the type system presented here does handle first-class models, but is not

able to detect as many structural problems. Additionally, this paper also considers structural

dynamic systems in depth.

7.6 Capper & Nilsson

The key ideas in this article were first presented by Capper et al. [7], which contained a

preliminary investigation into capturing structural properties of equation systems using con-

strained types. Since the initial investigation, the type system has been improved and ex-

tended in a number of ways, as described in this paper.

The core language has seen major improvements: eliminating unnecessary noise from

the language has lead to improvements in the presentation of the semantics and type system.

Moreover, the semantics now give an accurate account of variables in a modular systems of

equations, which has already shown to be useful for work in progress by Capper et al. based

upon early work for a denotational model of FHM [8].

An important extension featured in this article is the handling of structurally dynamic

systems. In particular, we outline constraints that define a fair policy (Sect. 4.3) for recon-

ciling the branches of a switch, allowing structural properties of the branches to be verified.

Furthermore, the existing constraint criteria for signal relations have been refined.

8 Future Work

There are a number of avenues of potential future work stemming from the system developed

in this article. In this section, these avenues are briefly explored, including discussion about

the utility, complexity, and importance of each extension.

The early discussion of structural dynamism (Sect. 2.4) raised the issue of (re)-init-

ialisation. Specifically, automatic initialisation of equation systems is in general a hard prob-

lem, and thus, we chose not to consider these aspects when designing the constraints for the

refined type system. Currently, Hydra allows the modeller to express initialisation logic ex-

plicitly using (re)-initialisation equations. Whilst this approach remains the most practical

solution, it would be desirable to capture structural properties of initialisation equations in

the refined type system. For example, such equations might be considered as a new kind of

equation, for which new structural invariants could be enforced.

A related problem is that of redundant equations, the utility of which underpins work

by Nilsson et al. [24] on simulating ideal diodes by exploiting structural dynamism. The

crux of the paper relies on introducing redundant equations — equations that do not specify
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new constraints when added to a system — intentionally creating an unbalanced system

of equations. Such a system would be rejected by our refined type system (indeed, this is

the point of the refined types), where instead it would be preferable to allow the modeller

to express such intentions (i.e., that an equation is redundant and is only present to ensure

that a particular technique for solving the equations will succeed). One solution might be to

allow the modeller to mark equations as weak or dependent, leaving it up to the type system

to decided whether said weak equations should be considered when generating constraints.

Another important consideration is the usability of the type system. From the perspec-

tive of translating a model into a program, full type inference means the modeller need not

be concerned with annotating (or even understanding) the constraints at work in the back-

ground. However, it is then unclear how best to communicate type errors resulting from

unsatisfiable constraints to the modeller. While simple examples might result in obvious

structural invariants being violated, desugaring of higher-level syntactic features may cause

equations system to become unrecognisable to the modeller. In such instances, the work by

Bunus et al. [5] may prove useful in tracking the surface-level meaning of programs through

syntactic transformations, allowing errors to be communicated in a more meaningful way.

In Sect. 4 we regard the constraint criteria as domain agnostic: the criteria are applica-

ble regardless of the chosen domain. It would be useful to consider generating constraints

for specific domains, where more information about the structure of equations means that

stronger structural invariants can be expressed.

Finally, as mentioned in Sect. 5.5, an important undertaking would be to prove metathe-

oretical properties that related directly to the refinements of the type system. However, as

stated in the aforementioned section, to state interesting properties beyond simple preser-

vation of unrefined types, one would likely need to consider a system with concrete signal

relation reduction (i.e. reduction that does not abstract away from variable occurances).

We would be particularly interested to show that if t : C ⇒ SR () n and ¬ satisfiable (C),
then there exists a structural configuration (i.e., a particular choice of switch branches), such

that t elaborates to a structurally singular system of equations. In other words, if a complete

modular system of equations is well-typed but ill-formed, then, at least for one possible

configuration, it really is a bad system, thus justly ruling it out. Intuitively, this follows

directly from the criteria of Sect. 4. Any one of these criteria is unsatisfiable only when it

is clear that there isn’t going to be a way to pair each equation with a variable even when

grossly overapproximating which variables occur in which equation. During elaboration, the

exact set of variables occurring in each equation is gradually going to become manifest. But

this set is necessarily a subset of the overapproximation of occurrences on which the criteria

is defined. Thus, if pairing was not possible before elaboration, it is certainly not going to

be possible after elaboration, where the number of choices of which equation to pair with

which variable is not going to be greater than before (but likely much smaller).

9 Summary and Conclusions

This article presents a novel and powerful approach to detecting structural problems in mod-

ular systems of equations. Components can be analysed in isolation, rather than requiring

assembly into a complete system of equations, thus allowing over- and underconstrained

systems to be detected early, aiding in error localisation. In particular, we advance the

current state-of-the-art by presenting a type system that is capable of handling first-class,

structurally dynamic models. Furthermore, the type system is able to detect more structural

properties than existing type systems by considering the kinds of equations that occurr in
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a modular system of equations. We also put forth a concise small-step semantics for FHM

that considers the non-trivial impact of evaluation on local variables.

Finally, it is worth remarking that the principles of the developed type system are in no

way specific to FHM and should be applicable to modular equation systems in general.
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