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Abstract. Declarative, Equation-Based Object-Oriented (EOO) mod-
eling languages, like Modelica, support modeling of physical systems by
composition of reusable component models. An important application
area is modeling of cyber-physical systems. EOO languages typically fea-
ture a connection construct allowing component models to be assembled
into systems much like physical components are. Different designs are
possible. This paper introduces, formalizes, and validates an approach
based on explicit nodes that expressly is designed to work for functional
EOO languages supporting higher-order modeling. The paper also con-
siders Modelica-style connections and explains why that design does not
work for functional EOO languages, thus mapping out the design space.
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1 Introduction

Equation-based Object-Oriented (EOO) languages is an emerging class of declar-
ative Domain-Specific Languages (DSLs) for modeling the dynamic aspects of
systems using (primarily) differential equations [6]. These languages are charac-
terized by acausal modeling of individual objects in the domain(s) of interest and
composition of such object models into a complete system model1. Acausal mod-
eling means there is no a priori assumption about the directionality of equations
(known vs. unknown variables). This greatly facilitates reuse and composition
[10], a crucial advantage for large models that can consist of thousands of equa-
tions. Moreover, EOO languages are typically capable of expressing models from
arbitrary physical domains (e.g., mechanical, electrical, hydraulic) and of sup-
porting hybrid modeling: modeling of both continuous-time and discrete-time as-
pects. State-of-the-art EOO languages include Modelica [11,19], VHDL-AMS [15]
1 Some of these languages share typical traits of object-oriented programming lan-

guages, such as a class system, but this is not essential: object-oriented here refers
to the focus on composition of reusable models that have a direct correspondence
to objects in the physical world. Also, note that, unlike (imperative) object-oriented
programming languages, EOO languages have no notion of mutable state.
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and Verilog-AMS [1]. Taken together, the characteristics of EOO languages make
them particularly suitable for modeling Cyber-Physical Systems: complex sys-
tems that combine embedded computers and networks (the cyber) with physical
processes [17]. Examples include cars, aircraft, and power plants.

Most EOO languages provide a mechanism to connect component models to-
gether in a way that mimics how physical components may be interconnected.
To obtain a purely mathematical model, these connections have to be translated
into equations. This translation is the connection semantics. Unsurprisingly, the
connection semantics is grounded in physical reality, such as the conservation
principles of various physical domains. Because these principles share a common
mathematical structure, it is possible to formulate the connection semantics in
a domain-neutral way. To that end, two kinds of physical quantities are dis-
tinguished: flow quantities and potential quantities. Connected flow quantities
are translated into sum-to-zero equations, as a connection point itself does not
provide any capability of storing the flowing quantity, while connected poten-
tial quantities are translated into equality constraints, as there can only be one
potential at a connection point. Modelica is one language taking this approach.

While state-of-the-art EOO languages like Modelica are highly successful, they
do have acknowledged weaknesses, including limited support for structurally
dynamic systems and limited meta-modeling capabilities per se [20,26]. These
and other considerations have led researchers to investigate a different approach
to EOO language design that supports higher-order modeling. The common idea
is to make models first class entities in the setting of a functional language and
using pure functions as the central abstraction mechanism [6,14,20].

Unfortunately, the connection semantics of Modelica-like languages is predi-
cated on specific design aspects of such languages and does not readily carry over
to a functional setting with first-class models. Moreover, at least the Modelica
connection semantics is complex and has not been fully formalized, making it
difficult to understand it precisely (for end users as well as for implementors).

In this paper we propose an alternative approach to specifying the connection
semantics based on explicit connection points, from now on nodes. The idea of
explicit nodes is not new; for example, it is used in VHDL-AMS, Verilog-AMS,
and other hardware description languages. The novel insight demonstrated in
this paper is how a node-based approach solves the problem of defining the
connection semantics in functional EOO languages. The resulting semantics is
also pleasingly clear. In more detail, our specific contributions are:

– We relate Modelica-style connection semantics (Section 2) and the node-
based approach (Section 3), thus mapping out part of the design space, and
we explain why the former approach does not work in a functional setting.

– We formalize the semantics of the node-based approach (Section 4).
– We describe and validate a prototype implementation of the node-based

approach in the Modeling Kernel Language (MKL) [6] (Section 5). (Note
that MKL is just a vehicle: the approach as such is language-independent.)
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2 Modelica-Style Approach

This section gives an informal overview of Modelica-style connection semantics
and explains why this approach does not work in a functional setting. Our exam-
ples are from the analog electrical domain. However, we re-iterate that connection
semantics in this paper is domain-neutral unless stated otherwise [8].

2.1 Models and Equation Generation

Fig. 1(a) depicts a graphical model of a simple electrical circuit. The model
consists of five component models, in this case a voltage source VS, a resistor R,
a capacitor C, an inductor L, and a ground G. At the lowest level of abstraction,
a model consists of a set of Differential-Algebraic Equations (DAEs) [16]. For
example, the behavior of resistor R is expressed declaratively by the algebraic
equation R*i = v (Ohm’s law) and the inductor’s behavior is stated using the
differential equation L*der(i) = v, where der(i) is the time derivative of i.

Each component model has one or more ports (or connectors) specifying its
connection points. For example, the negative ports (white boxes) of the capacitor
C and the inductor L are connected to the positive port (black box) of resistor R.
In the analog electrical domain, each port has two variable instances, a potential
variable v and a flow variable i, representing voltage and current respectively.

The connection semantics specifies how a set of connected ports is translated
into equations over their instance variables. Two kinds of equations are gener-
ated: pairwise equalities among the potential variables, and a sum-to-zero equa-
tion for the flow variables. We use Modelica’s dot-notation to refer to variables;
e.g, C.n.v refers to v of the negative port n of the capacitor C. As an example,
the port set {G.p, R.n, VS.n} (node a3) is translated into the two equations
R.n.v = G.p.v and VS.n.v = G.p.v for the potential variables and the sum-
to-zero equation G.p.i + R.n.i + VS.n.i = 0 for the flow variables.

2.2 Abstraction and Composition

In an EOO language, such as Modelica, a model is fundamentally a DAE sys-
tem. However, to promote reuse and facilitate construction, models are usually

R

C

L

VS

G
a3a2a1

R

C

L b2b1 b3

(a) (b)
VS

G
c2

(c)

SCc1

Fig. 1. Example of how parts of a circuit can be composed into a new model abstrac-
tion. Figure (a) shows the full circuit and (b) shows how three of the components are
composed into a new model. Figure (c) shows how the model in (b) is used.
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constructed hierarchically: related equations are grouped into models of physical
components; such models can then be instantiated any number of times and fur-
ther grouped into models of systems at progressively higher levels of abstraction.

For example, the model in Fig. 1(b) represents an abstraction of the compo-
nents R, C, and L from Fig. 1(a). The dashed box represents the outside border
of the abstracted model. Fig. 1(c) shows another way to model the circuit in (a),
this time as a composed model using the sub-circuit in (b) (named SC) as one
of the components. Hence, (a) and (c) model the exact same system, the only
difference being that (c) introduces one more hierarchical level of abstraction.

The question is how to define connection semantics for composed models
with several hierarchical levels of abstraction. In the Modelica-style, each port is
considered either an outside or an inside port, depending on whether the current
viewpoint is inside or outside a model. For example, in Fig. 1(b), when generating
the sum-to-zero equation for the connection b3, SC.n is considered an outside port
and SC.R.n an inside port. The Modelica specification [19] states that outside
connectors shall have a negative sign in sum-to-zero equations. The sum-to-zero
equation at node b3 is thus -SC.n.i + SC.R.n.i = 0. On the other hand, in
model (c), port SC.n is considered an inside port, hence the resulting sum-to-
zero equation for c2 is VS.n.i + SC.n.i + G.p.i = 0. Information about the
hierarchical structure is thus exploited when generating the equations.

2.3 Problems in a Functional Setting

In the Modelica-style approach, models have ports that define instance variables.
A port is a part of the model it belongs to, and as such, its position in a compo-
sitional hierarchy becomes unambiguously determined; in particular, each port
can be classified as inside or outside with respect to a specific model context and
then treated accordingly for connection purposes.

In contrast, a functional EOO language uses function abstraction (or some
variant thereof) for expressing model abstractions, with “ports” becoming formal
parameters. As a result, a port is no longer per se a part with an implied position
that can inform the generation of sum-to-zero equations. We can attempt to
overcome this by introducing connection nodes as an independent notion. A
model abstraction is then seen as a function mapping nodes to equations. But a
node is just a node, a value like any other, without any special relation to specific
abstractions, meaning that the notions inside and outside become meaningless.
For example, assume that the model SC is defined as a function with two formal
parameters. A function call SC(c1,c2) results in the nodes c1 and c2 being
substituted into the function body of SC, yielding a collapsed hierarchy without
any possibility to say whether a port is inside or outside.

Thus, the Modelica-style connection semantics does not carry over to a func-
tional setting essentially because it is predicated on exploiting contextual in-
formation alien to this setting. To address this, we develop in the following an
alternative approach that is suitable, based on nodes and branches (Electrical
Engineering terminology; here essentially a directed edge annotated with vari-
ables) forming an explicit graph. Other possibilities are discussed in Sec. 6.3.
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3 Node-Based Approach

This section informally describes the node-based approach to connection seman-
tics. It has two phases: (1) Collapsing the hierarchical model structure into a
directed graph of nodes, branches, and equations; (2) Translation of nodes and
branches into additional equations, yielding a pure system of equations; i.e.,
the connection semantics proper. The approach is demonstrated using a small
research language called the Modeling Kernel Language (MKL) [6]: a typed func-
tional language specifically designed for embedding equation-based DSLs. How-
ever, note that the approach as such is language-independent.

3.1 Phase 1: Collapsing the Model Hierarchy

In an functional EOO-language, functions are used as the abstraction mecha-
nism for describing composed models. For example, consider the following MKL
model, which is the textual representation of Fig. 1(a):

def CircuitA () = {
def a1,a2 ,a3:Electrical ;
SineVoltage (220,50,a1,a3);
Capacitor (0.02,a1,a2);
Inductor (0.1,a1,a2);
Resistor (200,a2,a3);
Ground(a3);

}

The model CircuitA is defined as a function without parameters. Three nodes
a1, a2, and a3 of type Electrical are defined. The five component mod-
els of the circuit are instantiated using function application; e.g., the applica-
tion Capacitor(0.02,a1,a2) instantiates a capacitor of 0.02 F. The connection
topology is defined by supplying the electrical nodes to the components; e.g.,
Capacitor is applied to nodes a1 and a2. Note how both parallel and serial
connections are expressed in this way (cf. Fig. 1(a)). The Capacitor model

def Capacitor (C:Real ,p:Electrical ,n:Electrical ) = {
def i:Current;
def v:Voltage;
Branch(i,v,p,n);
C * der(v) = i;

}

has parameters C (capacitance) p (positive port), and n (negative port). Two
unknown continuous-time signals i (current) and v (voltage) are defined inside
the body. The third line in the body instantiates a Branch with four elements.
Conceptually, a branch is a path between two nodes through a component model.
Branches are essential for the translational connection semantics because they
capture information necessary to generate correct signs in sum-to-zero equations.

Fig. 2 shows the resulting graph from evaluating the expression CircuitA().
Filled black arrows represent the branches (labeled edges). The nodes a1, a2,
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d1 d2 d3

iVC vVC

iC vC

iL vL
iR vR

iG vG

vVC = 220 ∗ sin(2 ∗ π ∗ 50 ∗ time)

0.02 ∗ der(vC) = iC

0.1 ∗ der(iL) = vL
200 ∗ iR = vR

vG = 0

Fig. 2. The connection graph after collapsing the model hierarchy of CircuitA or
CircuitC

and a3 maps to d1, d2, and d3 respectively. The graph is directed where the
arrow head represents the positive position (the third element of a branch-
instantiation) and the tail the negative position (forth element). The unknowns
for a specific component are listed above each arrow. For example, iR is the
current flowing through the resistor branch and vR is the voltage drop across the
branch. The behavior equation for a specific component model is given below
the arrow; e.g., Ohm’s law in the resistor case. The unfilled arrow represents a
reference branch (RefBranch) as used in the Ground model, for example:

def Ground(p:Electrical ) = {
def i:Current;
def v:Voltage;
RefBranch (i,v,p);
v = 0;

}

Note that the RefBranch is only connected to one node. The intuition is that
a reference branch makes the absolute values for a specific node accessible; i.e.,
the absolute potential value in relation to a global implicit reference value. The
ground model states that the potential in the ground node is zero (v = 0).

So far we have only used basic components, such as Resistor and Capacitor.
We now consider a model where one of the components itself is a composite
model. The following is an MKL model of the sub-circuit from Fig. 1(b):

def SubCircuit (p:Electrical ,n:Electrical ) = {
def b2:Electrical ;
Capacitor (0.02,p,b2);
Inductor (0.1,p,b2);
Resistor (200,b2,n);

}

The SubCircuit model is a function with two parameters p and n, both of type
Electrical. A minor difference compared with Fig. 1(b) is that only node b2
is defined inside the model: because a user of SubCircuit will supply the nodes
between which it is going to be connected via parameters p and n (nodes being
first-class), those nodes should not be defined inside SubCircuit. The model
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def CircuitC (SC:TwoPin) = {
def c1,c2:Electrical ;
SineVoltage (220,50,c1,c2);
SC(c1 ,c2);
Ground(c2);

}

is the MKL version of Fig. 1(c). It has one parameter SC of type TwoPin. This
is an example where Higher-Order Acausal Models (HOAMs) [7] is used, i.e.,
where a model is parametrized with another model. The type TwoPin,

type TwoPin = Electrical -> Electrical -> Equations

is defined as a curried function2 from nodes (type Electrical) to a system
of equations (type Equations). Because SubCircuit is of type TwoPin, the
expression CircuitC(SubCircuit) is well-typed and evaluating it results in a
connection graph. During evaluation, SC is replaced with SubCircuit, meaning
SubCircuit gets applied to the nodes c1 and c2. Hence c1 and c2 are substi-
tuted for the formal parameters p and n respectively. The resulting connection
graph for CircuitC(SubCircuit) is the same as that for Fig. 1(a), up to re-
naming of nodes. Thus, for CircuitA() the following holds: d1 = a1, d2 = a2,
and d3 = a3, while for CircuitC(SubCircuit): d1 = c1, d2 = b2, and d3 = c2.

3.2 Phase 2: The Connection Semantics

In the second phase, we translate the connection graph into a set of equations.
We describe this translation process by defining three translation rules.

In contrast to the Modelica semantics, ports do not define instance variables.
Nodes are instead defined explicitly in the model (e.g., d1, d2, and d3 in Fig. 2),
with each node corresponding to a set of connected ports in the Modelica ap-
proach. Instead of enforcing the equality of all potential variables of a port set
by generating equality constraints, we apply the following rule:

Rule 1 - Potential variables: Associate a distinct variable with each
node in the system representing the potential in that node.

Three new distinct continuous-time variables vp1, vp2, and vp3 are thus associated
with nodes d1, d2, and d3 respectively.

A sum-to-zero equation must be created for each node and the signs in the
equation must be chosen appropriately. This is where the information captured
by branches comes into play. Consider the definition of Capacitor again. The
first argument to Branch is the flow variable representing the current i through
the branch, the second argument the relative potential variable representing the
voltage v across the branch, the third argument the positive node p, and the
fourth argument the negative node n. We can now define the second rule:
2 All functions are curried in MKL even though the syntax of function definitions and

applications uses parentheses. This design choice was made to make the functional
style of programming more familiar to engineers used to the syntax of main-stream
programming and modeling languages.
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Rule 2 - Sum-to-zero equations: For each node n in the circuit, create
a sum-to-zero equation, such that the flow variables for the branches
connected to node n get a positive sign if the branch is pointing towards
the node, and a negative sign if it is pointing away from the node. For
reference branches, the positive sign is always used.

Rule 2 results in the sum-to-zero equations iVC + iC + iL = 0, iR − iC − iL = 0,
and iG − iR − iVC = 0 for nodes d1, d2, and d3 respectively.

The last translation rule defines the voltage across components:

Rule 3 - Branch equations: For each branch in the model, create an
equation stating that the relative potential across a branch is equal to
the difference between the potential variable of the positive node and the
one of the negative node. For a reference branch the relative potential is
equal to the potential variable of the associated node.

Rule 3 results in one equation for each component; i.e., vVC = vp1 − vp3, vC =
vp1 − vp2, vL = vp1 − vp2, vR = vp2 − vp3, and vG = vp3.

In the example, there are 13 variables in total: 10 variables originate from
the potential and flow variables of each component, while 3 are generated from
the nodes by rule 1. 5 behavior equations are explicitly stated for the model,
3 further equations are generated by rule 2 (sum-to-zero), and 5 more by rule
3. There are thus 13 equations and 13 variables: a necessary but not sufficient
condition for solving a set of independent equations.

We note the following invariants. First, for each node, rule 1 adds one variable
and rule 2 adds one equation. Second, two variables are always defined for each
component: one flow variable and one relative potential variable. There are also
always two equations for each component: one behavior equation defined in the
original component model, and one branch equation generated by rule 3.

These invariants make it clear that the balance between the number of vari-
ables and equations is preserved under interconnection of correctly defined com-
ponents. The approach is thus correct in that sense. However, the number of
generated equations is not minimal; for example, a sum-to-zero equation can
always be eliminated by using it to solve for one variable and substitute the re-
sult into other equations. However, we are not concerned with such issues here as
that has to do with solving the equations, not with the semantics of connections.

4 Formalization of the Connection Semantics

In this section we formalize the node-based connection semantics. Note that the
formalization is independent of MKL.

4.1 Notation and Syntax

Let N be a finite set of nodes and n ∈ N denote a node element. Let V be
a finite set of variables and v ∈ V a variable. Let Bbin be the set of binary
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branches and Bref be the set of unary reference branches. A binary branch is
a quadruple (vf , vrp, n1, n2) ∈ Bbin, where vf is a flow variable, vrp a relative
potential variable, n1 a first and n2 a second node connected to the branch. A
reference branch is a triple (vf , vrp, n1) ∈ Bref , where vf is the flow variable, vrp

a relative potential variable, n1 a connected node. Let B = Bbin ∪ Bref be the
set of all branches. The syntax of expressions e is given by the grammar rules

e ::= e + e | e - e | 0 | v

where + and - are the plus and minus operators, 0 the value zero, and v a
variable. The syntax for an equation is e1 = e2, where e1 and e2 are expressions.
Let E be a multiset of equations. A multiset is needed as equations could be
repeated in a model3.

We use braces to denote sets and square brackets to denote multisets. When
pattern matching on sets, the pattern A ∪ {a} matches a non-empty set with a
being bound to an arbitrary element of the set and A being bound to the rest
of the set, not including a.

We postulate an overloaded function vars that returns the set of variables
occurring in a branch, an expression, or a (multi)set of branches or expressions.
Similarly, we postulate an overloaded function nodes that returns the set of
nodes occurring in a branch or set of branches.

4.2 Semantics of Rules

Fig. 3 defines the connection semantics using (recursive) function definitions. The
functions are categorized according to the informal rules in previous section.

Rule 1 associates a new potential variable with each node. The function potvar
returns a bijective function pv mapping each node to a corresponding potential
variable, distinct from any of the existing variables VBE .

Rule 2 describes the generation of the multiset of sum-to-zero equations. The
rule defines one main function sumzeroeqns and one auxiliary function sumexpr.
The function sumezeroeqns takes two arguments, where the first argument N is
the set of nodes and the second argument B the set of branches. For each n ∈ N ,
the function creates the corresponding sum-to-zero expression using set-builder
notation for multisets together with calling sumexpr. The first three cases of
sumexpr concern binary branches by matching on the quadruple (vf , vrp, n1, n2).
Only branches directly connected to the node under consideration contribute to
the expression. The last two cases handle reference branches in the same manner.
Note that a literal 0 is inserted at the end of the recursion. This zero could easily
be eliminated by introducing unary minus in the expression syntax. However,
this would make the formalization less readable.

Rule 3 describes the generation of the multiset of relative potential equations.
The rule defines a function brancheqns that takes two arguments. The first ar-
gument pv is the mapping between nodes and potential variables (see Rule 1).
3 We do not wish to eliminate redundant equations here, and we note that syntactic

equality on equations would not suffice for this purpose anyway.



Node-Based Connection Semantics for EOO Modeling Languages 267

The second argument B is the set of branches. Different equations are generated
depending on whether a branch is a binary branch or a reference branch.

The last function definition consem takes the set B of branches and multiset
E of equations that already exists in the model (i.e, the behavior equations) as
arguments. The function returns the final multiset of model equations; i.e., the
initial equations along with all generated equations.

A branch starting and ending at the same node is a bit of a special case. The
relative potential across such a branch is, of course, 0, and no special consid-
eration is needed in rule 3 for the associated potential variable. However, such
a branch in itself imposes no constraints on the flow through it. Rule 2 thus

Rule 1 - Potential variables potvar(N, VBE)

potvar(N, VBE) = pv where pv : N → VP is bijective, VP ⊆ V, and VP ∩ VBE =∅

Rule 2 - Sum-to-zero equations sumzeroeqns(N, B)

sumzeroeqns(N, B) = [ sumexpr(n, B) = 0 | n ∈ N ]

sumexpr(n, B)

sumexpr(n, ∅) = 0

sumexpr(n, B ∪ {b}) =






sumexpr(n, B) + vf if (vf , vrp, n1, n2) = b and
n = n1 and n '= n2

sumexpr(n, B) - vf if (vf , vrp, n1, n2) = b and
n '= n1 and n = n2

sumexpr(n, B) if (vf , vrp, n1, n2) = b and
((n '= n1 and n '= n2) or
(n = n1 and n = n2))

sumexpr(n, B) + vf if (vf , vrp, n1) = b and n = n1

sumexpr(n, B) if (vf , vrp, n1) = b and n '= n1

Rule 3 - Branch equations brancheqns(pv , B)

brancheqns(pv , B) = [ eqn(b) | b ∈ B ] where

eqn(b) =

{
vrp = pv(n1) - pv(n2) if b = (vf , vrp, n1, n2)
vrp = pv(n1) if b = (vf , vrp, n1)

Translational connection semantics consem(B, E)

consem(B, E) = E ∪ sumzeroeqns(N, B) ∪ brancheqns(pv , B) where

N = nodes(B)

VBE = vars(B) ∪ vars(E)

pv = potvar(N, VBE)

Fig. 3. Formalization of the node-based connection semantics
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carefully ignores any such branch, meaning that the associated flow variable will
not appear in any sum-to-zero equation. (Of course, it would usually appear
in other equations, like component equations relating the relative potential and
flow.)

5 Implementation and Evaluation

We have developed a prototype implementation of the node-base connection
semantics as a functional EOO DSL in MKL. The prototype has three parts:

– Libraries for defining the elaboration semantics of a functional EOO DSL
supporting acausal modeling in the continuous-time domain. The connection
semantics that is part of the elaboration semantics was implemented accord-
ing to the formalization presented in this paper, with certain optimizations
together with more efficient data structures.

– Libraries for defining reusable components (models of physical objects) with-
in the analog electrical domain, the rotational mechanical domain, and au-
tomatic control domain.

– Test models that use the modeling libraries.

The evaluation of the prototype so far was concerned with testing the correctness
of the node-based approach compared to Modelica’s approach. The selected test
models were chosen according to the following criteria:

– Size of the model, where the largest model contained more than 1000 equa-
tions after translation.

– Combination of and interaction between different physical domains, like elec-
trical, mechanical, and control, to ensure domain-neutrality.

– Modeling abstraction and generation mechanisms, such as higher-order mod-
els and recursively defined models.

The test procedure was as follows:

1. The model was created in Modelica using standard components in Modelica
standard library.

2. The same model was created by using components from MKL’s standard
library. This library has been modeled according to the Modelica library.

3. The Modelica model was simulated using Dymola 6 [9], a Modelica environ-
ment. Data from the sensors was plotted and visualized.

4. The MKL model was translated into flat equations by the prototype imple-
mentation following the connection semantics defined in this paper. Dymola
6 was then used as a simulation backend to simulate and plot these flat
equations. Using the same simulation backend for both the model expressed
in Modelica and for the model expressed in MKL eliminates the risk of dif-
ferences in the results due to differences in employed simulation methods.

5. The plotted results from the Modelica model and the MKL model were
visually compared.
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In all cases the simulation result from the Modelica models were found to coincide
with the results from the corresponding MKL version of the model; i.e., the
results were the same. This confirms the described approach works as intended,
in a functional setting, and is applicable for multi-physical modeling. Moreover,
preliminary performance measurements of the translational semantics show that
the approach can scale up to hundreds of thousands equations. Our approach
has not yet been evaluated for structurally dynamic systems, which we see as
the next step of future work.

6 Related Work

6.1 Modelica

The work most closely related to the node-based approach is the connection se-
mantics for Modelica [11,19]. As we saw (Sec. 2), Modelica lets the modeler spec-
ify sets of interconnected component ports. Each such set corresponds to a node
and is translated into connection equations by taking the context-dependent clas-
sification of individual ports as being outside or inside into account. However,
nodes are not an explicit notion. In contrast, to provide connection function-
ality without relying on specific language design aspects (beyond the standard
notion of functions), nodes along with branches are made explicit notions in the
node-based approach and used to construct an explicit interconnection graph
containing all necessary information for subsequent translation into connection
equations. This approach is thus a good fit for e.g. functional EOO languages as
the kind of contextual information used in Modelica is not available (Sec. 2.3).

Furic [12] proposes an alternative connection semantics for Modelica. The
main objective is to make models compose better and to support structural dy-
namism. For example, in Modelica, missing or “duplicated” ground references
in electrical models typically lead to under- and over-constrained systems of
equations respectively, and ideal switches might mean there is no one way of
“grounding” the model that works for all structural configurations. Furic’s ap-
proach is based on nodes, like our approach, but, following VHDL-AMS, it em-
ploys relative potentials across branches between nodes, referred to as effort,
while absolute potentials at nodes are of no concern, unlike in our approach and
the standard Modelica approach. The end result is an explicit representation of
the model topology in the form of a graph, like in our case, which suggests that it
may be possible to adapt Furic’s approach to a functional setting. However, like
for VHDL-AMS, special source and sensor constructs are necessary to mediate
between the “effort/flow world” and the “signal world”, e.g. to feed in external
stimuli or make observations. This is more direct in our setting. Furic’s work has
not yet been formalized or thoroughly evaluated outside the electrical domain,
but constitute another interesting node-based approach.

6.2 Hardware Description Languages

Hardware Description Languages, such as VHDL and Verilog, are primarily used
for describing digital electrical circuits. However, there exist analog and mixed
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signal (AMS) extensions to both these languages: VHDL-AMS [2] and Verilog-
AMS [1] respectively. These variants allow modeling of continuous systems from
various physical domains. Both VHDL-AMS and Verilog-AMS have a node-based
connection semantics, where nodes connect components together via ports. How-
ever, in contrast to the work presented in this paper, neither language has a
formally specified semantics for connections. The VHDL-AMS specification [15]
describes the connection semantics informally as part of the elaboration phase of
the language. Similarly, Verilog-AMS definition states that DAE equations are
generated according to Kirchhoff’s laws, but does not specify how.

Lava [4] is a tool for specifying and verifying hardware circuits. It is em-
bedded in Haskell and makes use of higher-order functions and combinators for
composing circuits. Wired [3] is a relational language that is based on Lava, but
also models the layout of a circuit, including the wires. Both Lava and Wired
are used for describing digital circuits; the kind of connections discussed here
grounded in abstraction over phenomena from continuous physics is thus not
relevant. However, both employ a notion of explicit nodes for describing circuits.

SPICE [23] is a circuit simulation program originally developed at UC Berke-
ley in the 1970s. Circuits are defined using netlists, a textual description where
electrical components are connected together using nodes. SPICE uses a modified
nodal analysis method with special treatment for voltage sources to enable nu-
merical approximation. In contrast, our approach generates DAEs as output and
relies on symbolic/numerical methods developed in the 1980s-1990s for solving
DAEs [18,21,22]. Also, SPICE is designed for analog circuit simulation, whereas
our approach is based on ideas from Modelica and is domain-neutral.

6.3 Functional Acausal Languages

The Flow λ-calculus [5] is a minimal EOO language developed by the first author.
It is an extension of the λ-calculus with primitives for generating flow equations.
The approach to connections taken by the Flow λ-calculus inspired the node-
based approach presented here, but its semantics was more complex.

Functional Hybrid Modeling (FHM) [20] combines functional programming
and acausal modeling. It can be seen as a generalization of causal Functional
Reactive Programming (FRP) [25]. Hydra is a DSL within the FHM paradigm
developed by Giorgidze and Nilsson [14]. At present, the language is realized as
an embedding in Haskell [24], with just-in-time compilation of simulation code
for speed. FHM supports highly structurally dynamic systems and it makes a
strict distinction between time-invariant and time-varying entities, relegating
the latter to secondary status. The central FHM modeling-specific abstraction
is the signal relation. It is similar to model abstraction in MKL, but formally
parametrized on signals, time-varying values, not nodes.

Modelica-style connections are not applicable to FHM for the reasons outlined
in Sec. 2.3. Instead, a scheme is adopted with one connect-specification per
node enumerating all variables related by that node [13]. By assuming that flow
is always directed into a signal relation, the signs of the flow variables in the
generated sum-to-zero equations are always positive, independent of context.
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Signal relation application then takes care of the necessary sign-reversal for flow
quantities (what flows into one signal relation, flows out of another).

While this scheme is simple and quite effective, it does require connections
to be expressed in a particular way. For example, and perhaps unexpectedly,
connection by transitivity does not work. While static checks can be employed
to catch mistakes, the node-based approach would be an interesting alternative.

7 Conclusions

We presented and formalized a new, node-based approach to specifying model
composition through connections in the context of equation-based, acausal lan-
guages for modeling of physical systems. The main benefit compared to the
connect-based approach used in Modelica is that it does not assume much about
the language design. Thus it works well for, for example, functional EOO lan-
guages, which, indeed, was the goal of the design. Additional advantages include
its simplicity and clarity, as evidenced by the formalization.
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