
An Investigation Into the Use of Haskell for Dynamic
Programming

David McGillicuddy · Andrew J. Parkes ·
Henrik Nilsson

Abstract This paper investigates the potential benefits offered by adopting a declar-
ative approach, as embodied by modern functional languages with mature implemen-
tations, for prototyping algorithms for solving combinatorial optimisation problems.
For this class of problems there are usually many different options for the core al-
gorithms, supporting data structures and other implementation aspects. Thus tools
that allow different alternatives to be tried out quickly, focusing on the essence of the
problem, and as unencumbered as possible by implementation detail, would be very
useful. As a case study, we consider dynamic programming algorithms. These have
many uses in scheduling and timetabling: either directly, or as a component within
other methods such as column generation. Our findings suggest that off-the-shelf,
leading functional languages can indeed offer a range of compelling advantages in
this particular problem domain, while yielding a performance that is adequate for
verifying and evaluating the implemented algorithms as such.

Keywords Haskell · C · Java · Functional Programming · Dynamic Programming ·
Language Comparison

1 Introduction

Over the last few decades, the speed of computers has increased by orders of mag-
nitude, but the productivity of programmers has not kept pace. It is often far more
important to quickly produce correct and robust code than to optimise code for per-
formance. As computers continue to become more powerful this is ultimately going
to become the norm. Prototyping new heuristics and algorithms for combinatorial op-
timisation is arguably one area where speed of development of correct code is already
more important than absolute performance.

D. McGillicuddy, A. J. Parkes and H. Nilsson
School of Computer Science
University Of Nottingham
E-mail: {dxm, ajp, nhn}@cs.nott.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

508

We undertook a small case study as a preliminary investigation into whether a
declarative approach, specifically functional programming, is feasible for this do-
main and whether it can help speed up prototyping. Our basic observation is that al-
gorithms and heuristics for combinatorial optimisation at their core have clear math-
ematical specifications. Implementation, however, is often hampered by the need to
spell out a plethora of operational details. This is time-consuming, error prone, and
ultimately obscures the essence of the code. Thus if combinatorial optimisation al-
gorithms could be prototyped by, for the most part, transliterating the mathematical
specifications, and if the resulting performance were adequate for evaluation pur-
poses, much would be gained already. Additionally because the elementary, “school-
book” reasoning principle of substituting equals for equals is valid in declaratively
formulated code, applying property-based testing (where test cases are derived auto-
matically from stated correctness properties [1]), more easily exploiting multi-core
architectures, and formally proving correctness, are potentially facilitated.

For our case study, we have opted to look at a few standard dynamic programming
algorithms, specifically unbounded knapsack and longest common substring (LCS).
These have many uses and, for our purposes, are representative of a larger class of al-
gorithms in the domain of combinatorial optimisation. We have opted to use the pure,
lazy, functional language Haskell as our declarative implementation framework [4].
Using a pure language increases the contrast to the imperative languages commonly
used to implement this class of algorithms, making for a more interesting comparison,
while also allowing the specific advantages of working declaratively to be fully re-
alised. Further, Haskell is supported by mature, industrial-strength implementations,
resulting in a fairer performance comparison [6].

We would like to emphasise that our aim is not to advocate any particular func-
tional language for prototyping combinatorial optimisation algorithms. Rather, we
are interested in exploring what advantages functional notation (supported by mature
implementations) can bring today. However, it is worth noting that if these advan-
tages are judged to be compelling enough, functional language implementations can,
with relative ease, be leveraged for implementing domain-specific languages (DSL,
sometimes referred to as ‘executable specifications’). These allow domain-experts in-
terested in working declaratively to reap the benefits of the approach without having
to become seasoned functional programmers themselves [3]. One example of such
a DSL, used to define and manipulate financial contracts, was produced by Simon
Peyton Jones et al. and a derivative of it is used in industry by companies such as
Bloomberg and HSBC Private Bank [5].

We carry out the study by implementing each of the chosen algorithms (un-
bounded knapsack and LCS) in Haskell, Java, and C. The implementations are then
compared along a number of dimensions, including conciseness, modularity and per-
formance, as well as ease of debugging, reasoning and parallelising. To make the
comparisons meaningful we retain the structure the of the implementations across
languages, except where we take advantage of specific language features (such as
pointers, objects, or laziness). The implementations are further idiomatic and repre-
sentative of what a “typical” programmer might write, without non-portable micro-
optimisations. In particular, standard libraries are used throughout for data structures
and mathematical computations, with as little as possible implemented from scratch.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

509

2 An Illustrative Example

In a recent high profile case [2], a spreadsheet bug caused erroneous results from
an economical analysis to be published, possibly influencing European Union pol-
icy1. The error was caused in part by an indexing mistake that accidentally excluded
several countries from the analysis, a clear example of operational details causing
problems. As an analogy, consider summing a collection of numbers. In a declara-
tive setting the numbers (whether in the form of an array, list, stream, or otherwise)
are simply passed to a generic sum function. Indexing and element-wise operations
take place behind the scenes, completely eliminating these as possible sources of pro-
grammer error. By contrast, in most spreadsheets, the range of cells to be summed are
manually selected (e.g., “C3:C100”) which can be error-prone. Let us consider how
similar ideas might improve a combinatorial optimisation algorithm. Lack of space
precludes describing the full results of Knapsack and LCS, however, solving the un-
bounded knapsack problem involves finding the Greatest Common Divisor (gcd) of
the initial capacity and an array W of n weights. The function gcd2 is associative.
Thus to get the gcd of the n+1 numbers, first the gcd of the capacity and W0 is calcu-
lated, then the gcd of that number and W1, and so on for each Wi, reducing to a single
integer after n calls. Figure 1 shows the algorithm implemented in Java 7. Iteration
over the elements has been abstracted into a for-each loop. The accumulator variable
gcd all is initialised to capacity and then gcd’d with each weight, updating the accu-
mulator variable with the result of gcd for each Wi. The C version of the algorithm is
almost identical, except that the indices and loop ranges have to be written explicitly,
adding further operational details. The Haskell version of gcd is shown in figure 2.
Here the idiom of reducing a list by a binary function and accumulator is captured
by the function foldr1 , so called because it folds, associating to the right, over a list
with at least one element. There is thus no need for the user to specify how and when
the accumulator should be updated. Furthermore, since the definition of gcd contains
the rule ‘gcd 1 = 1’, which states that ∀x.gcd(1,x) = 1, it can be said to be short-
circuiting; i.e., if the first argument is equal to 1 then, due to lazy evaluation, the
second argument is not inspected and is ignored. Therefore gcds will automatically
stop once a 1 is encountered without any change to the loop itself. Achieving the
same optimisation in Java (or C) would require changing the code for the loop itself
by fusing it with part of the code gcd. This would break modularity, hamper reuse,
and possibly render the code less readable. In this very small example, adding a check
to see if gcd all is equal to 1 at each iteration and halting the loop if so is a trivial
change. However, had the loop or the called function been more involved, the mod-
ification would have been correspondingly harder because the code that governs the
loop might be quite divorced from the code that updates the accumulating variable.

1 www.bbc.co.uk/news/magazine-22223190
2 Which takes two strictly positive integers and returns the largest integer that divides them both.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

510

p u b l i c i n t gcds (i n t c a p a c i t y , i n t [] w e i g h t s) {
i n t g c d a l l = c a p a c i t y ;
f o r (i n t we ig h t : w e i g h t s) {

g c d a l l = gcd (g c d a l l , we ig h t) ;
}
return g c d a l l ;

}

Fig. 1: Java 7

gcds : : I n t −> [I n t] −> I n t
gcds c a p a c i t y w e i g h t s = f o l d r 1 gcd (c a p a c i t y : w e i g h t s)

Fig. 2: Haskell

3 Results and Conclusions

Our findings so far, to be detailed in the full version of the paper, suggest that func-
tional languages supported by mature implementations can indeed speed up develop-
ment by allowing implementations to stay close to specifications, taking advantage of
specific language features such as laziness, and eliminating certain classes of errors.
Furthermore, they can achieve this without incurring a performance penalty that is
unacceptable for prototypes. Our benchmark results for unbounded knapsack suggest
that the C code is not more than about five times faster than the Haskell version. There
are a wide range of languages that provide a transition path to more functional code;
first-class functions, folds and pattern-matching have been added to object-oriented
languages such as Java, C#, Scala and C++. F# and Clojure can interface seamlessly
with C# and Java respectively, and both Haskell and Rust can easily interoperate with
C. As such the authors recommend that readers familiarise themselves with these
idioms and consider using them in their OR prototypes and implementations.

Acknowledgements This work was funded in part by EPSRC grant EP/F033613/1.

References

1. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell programs.
SIGPLAN Not. 46(4), 53–64 (2011). DOI 10.1145/1988042.1988046. URL http://doi.acm.org/

10.1145/1988042.1988046
2. Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic growth? A critique

of Reinhart and Rogoff. Cambridge Journal of Economics (2013). DOI 10.1093/cje/bet075. URL
http://cje.oxfordjournals.org/content/early/2013/12/17/cje.bet075.abstract

3. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth International Con-
ference on Software Reuse, pp. 134–142 (1998)

4. Jones, S.P. (ed.): Haskell 98 Language and Libraries – The Revised Report. Cambridge University
Press, Cambridge, England (2003)

5. Jones, S.P., Eber, J.M., Seward, J.: Composing contracts: an adventure in financial engineering (func-
tional pearl). ACM SIGPLAN NOTICES 35(9), 280–292 (2000)

6. Terei, D.A., Chakravarty, M.M.: An llvm backend for ghc. In: ACM Sigplan Notices, vol. 45, pp.
109–120. ACM (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

511

