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Functional Reactive Programming (1)

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as whole.

• FRP originated in Conal Elliott and Paul Hudak’s
work on Functional Reactive Animation (Fran).
(Highly cited 1997 ICFP paper; ICFP award
for most influential paper in 2007.)

• FRP has evolved in a number of directions
and into different concrete implementations.

• This talk considers Yampa: an arrows-based
FRP system embedded in Haskell.
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Functional Reactive Programming (2)

• Yampa: pure and principled implementation in
a pure setting.
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Functional Reactive Programming (2)

• Yampa: pure and principled implementation in
a pure setting.

• In particular: many algebraic laws hold.

• These guide the implementation and
optimisations: a theme of this talk.
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FRP Applications (1)

Some domains where FRP or FRP-inspired
approaches have been used:

• Robotics

• Vision

• Sound synthesis

• GUIs

• Virtual Reality Environments

• Games

• Distributed Event-based Systems
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FRP Applications (2)

Example: Breakout in Yampa (and SDL) on a tablet:
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Take-home Game!

Or download one for free to your Android device!

Play Store: Pang-a-lambda (Keera Studios)
Implementing and Optimising FRP – p.6/46



Arrows?

• A notion of computation: function-like
entities that may have effects.
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Arrows?

• A notion of computation: function-like
entities that may have effects.

• Examples:

- Pure functions

- “Functions” with internal state

- Conditional probabilities

- Any function of the form a → M b where M
is a monad (the “Kleisli construction”).

• A number of algebraic laws must be
satisfied: we will come back to those.

• Arrows due to Prof. John Hughes.
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The Arrow framework (1)

arr f f >>> g

first f loop f

Types signatures for some arrow F:

arr :: (a -> b) -> F a b

(>>>) :: F a b -> F b c -> F a c

first :: F a b -> F (a,c) (b,c)

loop :: F (a, c) (b, c) -> F a b
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The Arrow framework (2)

Some derived combinators:

f *** g f &&& g

(***) :: F a b -> F c d -> F (a,c) (b,d)

(&&&) :: F a b -> F a c -> F a (b,c)
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Constructing a network
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Constructing a network

Tedious way to program?
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Constructing a network

Tedious way to program?

Yes, can be. But syntactic support can be provided.
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Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure
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Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure

(But not everything labelled “FRP” supports them
all.)
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Yampa (1)
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Yampa (1)

• FRP implemenattion embedded in Haskell

• Key concepts:

- Signals: time-varying values

- Signal Functions: functions on signals

- Switching between signal functions

• Programming model:
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Yampa (2)

• Signal functions are the primary notion:
first-class entities.
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Yampa (2)

• Signal functions are the primary notion:
first-class entities.

• Signals are a secondary notion: only exist
indirectly.

• This is a key aspect allowing for a fundamentally
simple, pure, implementation.

• Of course, FRP does not have to be implemented
purely, and many FRP implementations are
indeed not pure. But keeping it pure makes it
easier to get correct. Good for reference if
nothing else.
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Yampa?
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Yampa?

Yet Another Mostly Pointless Acronym?

Implementing and Optimising FRP – p.14/46



Yampa?

Yet Another Mostly Pointless Acronym?

Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal Functions
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Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time -> a

x :: Signal T1

y :: Signal T2

SF a b ≈ Signal a -> Signal b

f :: SF T1 T2

Additionally, causality required: output at time t
must be determined by input on interval [0, t].
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Signal Functions and State

Alternative view:
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Signal Functions and State

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:

• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)
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Signal Functions and State

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:

• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

Signal functions form an arrow.
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Some Basic Signal Functions

identity :: SF a a
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identity :: SF a a

constant :: b -> SF a b

iPre :: a -> SF a a
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Some Basic Signal Functions

identity :: SF a a

constant :: b -> SF a b

iPre :: a -> SF a a

integral :: VectorSpace a s=>SF a a

y(t) =

t∫

0

x(τ) dτ
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A basic implementation: SF (1)

Each signal function is essentially represented
by a transition function. Arguments:

• Time passed since the previous time step.

• The current input value.

Returns:

• A (possibly) updated representation of the
signal function, the continuation.

• The current value of the output signal.
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A basic implementation: SF (2)

type DTime = Double

data SF a b =

SF {sfTF :: DTime -> a

-> Transition a b}

type Transition a b = (SF a b, b)

The continuation encapsulates any internal state
of the signal function. The type synonym DTime

is the type used for the time deltas, > 0.

Implementing and Optimising FRP – p.19/46



A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:
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A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.

• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function
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A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.

• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function

- writes the resulting output sample to the
environment (typically I/O action).
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A basic impl.: reactimate (2)

• The loop then repeats, but uses the
continuation returned from the transition
function on the next iteration, thus ensuring
any internal state is maintained.
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A basic implementation: arr

arr :: (a -> b) -> SF a b

arr f = sf

where

sf = SF {sfTF = \_ a -> (sf, f a)}

Note: It is obvious that arr constructs a
stateless signal function since the returned
continuation is exactly the signal function being
defined, i.e. it never changes.
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A basic implementation: >>>

For >>>, we have to combine their continuations
into updated continuation for the composed arrow:

(>>>) :: SF a b -> SF b c -> SF a c

(SF {sfTF = tf1}) >>> (SF {sfTF=tf2}) =

SF {sfTF = tf}
where

tf dt a = (sf1’ >>> sf2’, c)

where

(sf1’, b) = tf1 dt a

(sf2’, c) = tf2 dt b

Note how same time delta is fed to both subordinate
signal functions, thus ensuring synchrony.
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A basic impl.: How to get started? (1)

What should the very first time delta be?
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A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.
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A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.

• Instead:

- Initial SF representation makes a first
transition given just an input sample.

- Makes that transition into a representation
that expects time deltas from then on.
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A basic impl.: How to get started? (2)

data SF a b =

SF {sfTF :: a -> Transition a b}

data SF’ a b =

SF’ {sfTF’ :: DTime -> a

-> Transition a b}

type Transition a b = (SF’ a b, b)

SF’ is internal, can be thought of as representing
a “running” signal function.
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id

data SF a b = ...

| SFId

| ...
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id

data SF a b = ...

| SFId

| ...

2. Make SF abstract by hiding all its
constructors.
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Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:

identity :: SF a a

identity = SFId
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Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:

identity :: SF a a

identity = SFId

4. Define optimizing version of >>>:

(>>>) :: SF a b -> SF b c -> SF a c

...

SFId >>> sf = sf

...

:: SF b c 6= SF a c

Implementing and Optimising FRP – p.27/46



No optimization possible?

The type system does not get in the way of all
optimizations. For example, for:

constant :: b -> SF a b

constant b = arr (const b)

the following laws can readily be exploited:

sf >>> constant c = constant c

constant c >>> arr f = constant (f c)

But to do better, we need GADTs.
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Generalized Algebraic Data Types

GADTs allow

• individual specification of return type of
constructors

• the more precise type information to be taken
into account during case analysis.
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Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...

| SFId

| ...
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data SF a b = ...

| SFId
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Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...

| SFId

| ... :: SF a b

we define

data SF a b where

...

SFId :: SF a a

...
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Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c

...
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Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c

...

SFId >>> sf = sf

...

:: SF a a :: SF a c

Implementing and Optimising FRP – p.31/46



Other Ways? Statically?

• Other (typed) approaches include keeping
coercion functions around as “evidence” for
use at runtime (Hughes 2004). But imposes
an overhead.
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• Other (typed) approaches include keeping
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use at runtime (Hughes 2004). But imposes
an overhead.

• When network structure is static, optimizations
can be carried out once and for all. But
Yampa networks may evolve over time.
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Other Ways? Statically?

• Other (typed) approaches include keeping
coercion functions around as “evidence” for
use at runtime (Hughes 2004). But imposes
an overhead.

• When network structure is static, optimizations
can be carried out once and for all. But
Yampa networks may evolve over time.

arr g >>> switch (...) (\_ -> arr f)
switch
=⇒ arr g >>> arr f = arr (f . g)
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Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))
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Causal Commutative Arrows

• The Yampa arrow satisfies additional laws: in
particular it is commutative, meaning
ordering between signal functions composed
in parallel is irrelevant.
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Causal Commutative Arrows

• The Yampa arrow satisfies additional laws: in
particular it is commutative, meaning
ordering between signal functions composed
in parallel is irrelevant.

• This can be exploited (Liu, Cheng, Hudak 2009)
to define a Causal Commutative Normal
Form (CCNF) for switch-free networks.

• Essentially CCNF is a Mealy Machine.

• Not exploited in Yampa, but this optimization has
been used to obtain performance gains of two
orders of magnitude (over Yampa-like performance).
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Implementation (1)

data SF a b where

SFArr ::

(DTime -> a -> (SF a b, b))

-> FunDesc a b

-> SF a b

SFCpAXA ::

(DTime -> a -> (SF a d, d))

-> FunDesc a b->SF b c->FunDesc c d

-> SF a d

SF ::

(DTime -> a -> (SF a b, b))

-> SF a b
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Implementation (2)

data FunDesc a b where

FDI :: FunDesc a a

FDC :: b -> FunDesc a b

FDG :: (a -> b) -> FunDesc a b
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Implementation (2)
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Implementation (2)

data FunDesc a b where

FDI :: FunDesc a a

FDC :: b -> FunDesc a b

FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:

fdFun :: FunDesc a b -> (a -> b)

fdFun FDI = id

fdFun (FDC b) = const b

fdFun (FDG f) = f
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Implementation (2)
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Implementation (3)

fdComp :: FunDesc a b -> FunDesc b c

-> FunDesc a c

fdComp FDI fd2 = fd2

fdComp fd1 FDI = fd1

fdComp (FDC b) fd2 =

FDC ((fdFun fd2) b)

fdComp _ (FDC c) = FDC c

fdComp (FDG f1) fd2 =

FDG (fdFun fd2 . f1)
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Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).
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Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Consider composition of pure event processing:

f :: Event a -> Event b

g :: Event b -> Event c

arr f >>> arr g
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Optimizing Event Processing (1)

Additional function descriptor:

data FunDesc a b where

...

FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b
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Optimizing Event Processing (1)

Additional function descriptor:

data FunDesc a b where

...

FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

Extend the composition function:

fdComp (FDE f1 f1ne) fd2 =

FDE (f2 . f1) (f2 f1ne)

where

f2 = fdFun fd2
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Optimizing Event Processing (2)

Extend the composition function:

fdComp (FDG f1) (FDE f2 f2ne) = FDG f

where

f a =

case f1 a of

NoEvent -> f2ne

f1a -> f2 f1a
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Optimizing Event Processing (2)

Extend the composition function:

fdComp (FDG f1) (FDE f2 f2ne) = FDG f

where

f a =

case f1 a of

NoEvent -> f2ne

f1a -> f2 f1a
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b

-> SF (Event a) b
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A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b

-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b

-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
Introduce explicit representation:

data SF a b where

...

SFEP :: ...

-> (c -> a -> (c, b, b)) -> c -> b

-> SF (Event a) b
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Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.

• Larger size of signal function representation.
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Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.

• Larger size of signal function representation.

Is the result really a performance improvement?
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Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.

• Larger size of signal function representation.

Is the result really a performance improvement?
A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended, including:

• Space Invaders

• MIDI Event Processor
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Benchmark 1: Space Invaders
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Benchmark 2: MIDI Event Processor

High-level model of a MIDI event processor
programmed to perform typical duties:
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The MEP4
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Results

Benchmark TU [s] TO [s] TO/TU

Space Inv. 0.95 0.86 0.93

MEP 19.39 10.31 0.48
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Results

Benchmark TU [s] TO [s] TO/TU

Space Inv. 0.95 0.86 0.93

MEP 19.39 10.31 0.48

Most important gains:

• Insensitive to bracketing.

• A number of “pre-composed” combinators no
longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.
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