The Problem (1)

- A core aspect of equation-based modelling: modular description of models through composition of equation system fragments.
- Naturally, we are interested in ensuring composition makes sense, catching any mistakes as early as possible.
- Central question: do the equations have a solution?
- Cannot be answered comprehensively before we have a complete model. **Not very modular!**

The Problem (2)

- However, it might be possible to check violations of certain necessary conditions for solvability in a modular way!
- One necessary condition for solvability is that a system must not be structurally singular.
- The paper investigates the extent to which the structural singularity of a system of equations can be checked modularly.

Modular Systems of Equations (1)

We need a notation for modular systems of equations. Note:

- a system of equations specifies a relation among a set of variables
- specifically, our interest is relations on time-varying values or signals
- an equation system fragment needs an interface to distinguish between local variables and variables used for composition with other fragments.
Modular Systems of Equations (2)

These ideas can be captured through a notion of typed signal relations:

\[\text{foo} :: \text{SR} (\text{Real}, \text{Real}, \text{Real}) \]
\[\text{foo} = \text{sigrel} (x_1, x_2, x_3) \text{ where} \]
\[f_1 \ x_1 \ x_2 \ x_3 = 0 \]
\[f_2 \ x_2 \ x_3 = 0 \]

Modular Systems of Equations (4)

Treating signal relations as first class entities in a functional setting is a simple way to add essential functionality, such as a way to parameterize the relations:

\[\text{foo2} :: \text{Int} \rightarrow \text{Real} \rightarrow \text{SR} (\text{Real}, \text{Real}, \text{Real}) \]
\[\text{foo2 \ n \ k} = \text{sigrel} (x_1, x_2, x_3) \text{ where} \]
\[f_1 \ n \ x_1 \ x_2 \ x_3 = 0 \]
\[f_2 \ x_2 \ x_3 = k \]

Modular Systems of Equations (3)

Composition can by expressed through signal relation application:

\[\text{foo} \circ (u, v, w) \]
\[\text{foo} \circ (w, u + x, v + y) \]
yields

\[f_1 \ u \ v \ w = 0 \]
\[f_2 \ v \ w = 0 \]
\[f_1 \ w \ (u + x) \ (v + y) = 0 \]
\[f_2 \ (u + x) \ (v + y) = 0 \]

Example: Resistor Model

\[\text{twoPin} :: \text{SR} (\text{Pin}, \text{Pin}, \text{Voltage}) \]
\[\text{twoPin} = \text{sigrel} (p, n, u) \text{ where} \]
\[u = p.v - n.v \]
\[p.i + n.i = 0 \]
\[\text{resistor} :: \text{Resistance} \rightarrow \text{SR} (\text{Pin}, \text{Pin}) \]
\[\text{resistor} \ r = \text{sigrel} (p, n) \text{ where} \]
\[\text{twoPin} \circ (p, n, u) \]
\[r \ast p.i = u \]
Tracking Variable/Equation Balance?

Equal number of equations and variables is a necessary condition for solvability. For a modular analysis, one might keep track of the balance in the signal relation type:

\[SR(\ldots)n \]

But very weak assurances:

\[
\begin{align*}
 f(x, y, z) &= 0 \\
 g(z) &= 0 \\
 h(z) &= 0
\end{align*}
\]

A Possible Refinement (1)

A system of equations is \textit{structurally singular} iff it is not possible to put the variables and equations in a one-to-one correspondence such that each variable occurs in the equation it is related to.

A Possible Refinement (2)

Structural singularities can be discovered by studying the \textit{incidence matrix}:

<table>
<thead>
<tr>
<th>Equations</th>
<th>Incidence Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1(x, y, z) = 0)</td>
<td>(\begin{pmatrix} x & y & z \ 1 & 1 & 1 \ 0 & 0 & 1 \ 0 & 0 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>(f_2(z) = 0)</td>
<td></td>
</tr>
<tr>
<td>(f_3(z) = 0)</td>
<td></td>
</tr>
</tbody>
</table>

A Possible Refinement (3)

So maybe we can index signal relations with incidence matrices?

\[
foo :: SR(\text{Real}, \text{Real}, \text{Real}) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]

\[
foo = \text{sigrel}(x_1, x_2, x_3) \text{ where } \\
\begin{align*}
 f_1 x_1 x_2 x_3 &= 0 \\
 f_2 x_2 x_3 &= 0
\end{align*}
\]
Structural Type (1)

- The **Structural Type** represents information about which variables occur in which equations.
- Denoted by an incidence matrix.
- Two interrelated instances:
 - Structural type of a system of equations
 - Structural type of a signal relation

Composition of Structural Types (1)

Recall

\[
\text{foo} :: SR(\text{Real, Real, Real}) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]

Consider

\[
\text{foo} \odot (u, v, w) \\
\text{foo} \odot (w, u + x, v + y)
\]

in a context with five variables \(u, v, w, x, y\).

Structural Type (2)

- The structural type of a system of equations is obtained by **composition** of the structural types of constituent signal relations. **Straightforward.**
- The structural type of a signal relation is obtained by **abstraction** over the structural type of a system of equations. **Less straightforward.**

Composition of Structural Types (2)

The structural type for the equations obtained by instantiating \(\text{foo}\) is simply obtained by Boolean matrix multiplication. For \(\text{foo} \odot (u, v, w)\):

\[
\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} = \\
\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}
\]
Composition of Structural Types (3)

For $\text{foo} \diamond (w, u + x, v + y)$:

$$
\begin{pmatrix}
u & v & w & x & y \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{pmatrix} =
\begin{pmatrix}
u & v & w & x & y \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1
\end{pmatrix}
$$

Composition of Structural Types (4)

Complete incidence matrix and corresponding equations:

$$
\begin{pmatrix}
u & v & w & x & y \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
f_1 & u & v & w \\
f_2 & v & w \\
f_1 & w & (u + x) & (v + y) \\
f_2 & (u + x) & (v + y)
\end{pmatrix} =
\begin{pmatrix}0 \\
0 \\
0 \\
0
\end{pmatrix}
$$

Abstraction over Structural Types (1)

Now consider encapsulating the equations:

$\text{bar} = \text{sigrel} (u, y)$ where

$$
\text{foo} \diamond (u, v, w) \\
\text{foo} \diamond (w, u + x, v + y)
$$

The equations of the body of bar needs to be partitioned into

- **Local Equations**: equations used to solve for the local variables
- **Interface Equations**: equations contributed to the outside

Abstraction over Structural Types (2)

How to partition?

- **A priori local equations**: equations over local variables only.
- **A priori interface equations**: equations over interface variables only.
- **Mixed equations**: equations over local and interface variables.

Note: too few or too many local equations gives an opportunity to catch locally underdetermined or overdetermined systems of equations.
Abstraction over Structural Types (3)

In our case:

• We have 1 a priori local equation, 3 mixed equations
• We need to choose 3 local equations and 1 interface equation
• Consequently, 3 possibilities, yielding the following possible structural types for bar:

\[
\begin{pmatrix}
u \\ y \\
1 \\ 0
\end{pmatrix}, \quad
\begin{pmatrix}
u \\ y \\
1 \\ 1
\end{pmatrix}, \quad
\begin{pmatrix}
u \\ y \\
1 \\ 1
\end{pmatrix}
\]

Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

• Assume the choice is free
• Note that a type with more variable occurrences is “better” as it gives more freedom when pairing equations and variables. Thus discard choices that are subsumed by better choices.
• As a last resort, approximate.

Details in the paper.

Also in the Paper

• A more realistic modelling example:

- Structural types for components of this model
- Example of error in this model that is caught by the proposed method, but would not have been found by just counting equations and variables.