Type-Based Structural Analysis for Modular Systems of Equations

FPL Away Days 2009

Henrik Nilsson

School of Computer Science

University of Nottingham
The Problem (1)

- A core aspect of equation-based modelling: modular description of models through composition of equation system fragments.
The Problem (1)

- A core aspect of equation-based modelling: modular description of models through composition of equation system fragments.
- Central questions:
 - *Does a system of equations have a (unique) solution?*
 - *Does an individual fragment “makes sense”?*
The Problem (1)

- A core aspect of equation-based modelling: modular description of models through composition of equation system fragments.

- Central questions:
 - *Does a system of equations have a (unique) solution?*
 - *Does an individual fragment “makes sense”?*

- Desirable to detect problematic fragments and compositions as early as possible.
The Problem (2)

- Consider:

\[x + y + z = 0 \] (1)
The Problem (2)

- Consider:

\[x + y + z = 0 \] \hspace{1cm} (1)

- Does not have a (unique) solution.
The Problem (2)

- Consider:

\[x + y + z = 0 \quad (1) \]

- Does not have a (unique) solution.
- Could be part of a system that does have a (unique) solution.
Consider:

\[x + y + z = 0 \]

- Does not have a (unique) solution.
- Could be part of a system that does have a (unique) solution.

The same holds for:

\[x - y + z = 1 \]
\[z = 2 \]
The Problem (3)

- Composing (1) and (2):

\[
\begin{align*}
 x + y + z &= 0 \\
 x - y + z &= 1 \\
 z &= 2
\end{align*}
\]

Does have a solution.
The Problem (3)

- Composing (1) and (2):

\[
\begin{align*}
 x + y + z &= 0 \\
 x - y + z &= 1 \\
 z &= 2
\end{align*}
\]

Does have a solution.

- However, the following fragment is over-constrained:

\[
\begin{align*}
 x &= 1 \\
 x &= 2
\end{align*}
\]

(4)
The Problem (4)

- Cannot answer questions regarding solvability comprehensively before we have a complete system. *Not very modular!*
The Problem (4)

• Cannot answer questions regarding solvability comprehensively before we have a complete system. *Not very modular!*

• However, maybe violations of certain necessary conditions for solvability can be checked modularly?
The Problem (4)

- Cannot answer questions regarding solvability comprehensively before we have a complete system. *Not very modular!*
- However, maybe violations of certain necessary conditions for solvability can be checked modularly?
 - *Variable-equation balance*
• Cannot answer questions regarding solvability comprehensively before we have a \textit{complete} system. \textit{Not very modular!}

• However, maybe violations of certain \textit{necessary} conditions for solvability can be checked modularly?
 - \textit{Variable-equation balance}
 - \textit{Structural singularity}
The Problem (4)

- Cannot answer questions regarding solvability comprehensively before we have a complete system. *Not very modular!*

- However, maybe violations of certain *necessary* conditions for solvability can be checked modularly?
 - *Variable-equation balance*
 - *Structural singularity*

- This talk: preliminary investigation into modular checking of structural singularity. (Paper at EOOLT’08)
Modular Systems of Equations (1)

Need notation. Observations:
Modular Systems of Equations (1)

Need notation. Observations:

• a system of equations specifies a \textit{relation} among a set of variables
Modular Systems of Equations (1)

Need notation. Observations:

- a system of equations specifies a *relation* among a set of variables

- specifically, our interest is relations on time-varying values or *signals*
Need notation. Observations:

- a system of equations specifies a *relation* among a set of variables
- specifically, our interest is relations on time-varying values or *signals*
- an equation system fragment needs an *interface* to distinguish between local variables and variables used for composition with other fragments.
These ideas can be captured through a notion of **typed signal relations**:

\[
foo :: SR (\text{Real}, \text{Real}, \text{Real})
\]

\[
foo = \text{sigrel} (x_1, x_2, x_3) \text{ where } \begin{align*}
 f_1 & \quad x_1 \quad x_2 \quad x_3 = 0 \\
 f_2 & \quad x_2 \quad x_3 = 0
\end{align*}
\]

A signal relation is an **encapsulated equation system fragment**.
Modular Systems of Equations (2)

These ideas can be captured through a notion of **typed signal relations**:

\[
\text{foo} :: \text{SR} \left(\text{Real}, \text{Real}, \text{Real} \right) \\
\text{foo} = \text{sigrel} \left(x_1, x_2, x_3 \right) \text{ where} \\
\begin{align*}
 f_1 \ x_1 \ x_2 \ x_3 &= 0 \\
 f_2 \ x_2 \ x_3 &= 0
\end{align*}
\]

A signal relation is an **encapsulated equation system fragment**.
Of course, the ideas are general and not limited to equations over signals.
Modular Systems of Equations (3)

Composition can by expressed through *signal relation application*:

\[
\text{foo} \odot (u, v, w) \\
\text{foo} \odot (w, u + x, v + y)
\]

yields

\[
\begin{align*}
f_1 \quad &u \quad v \quad w &= 0 \\
f_2 \quad &v \quad w &= 0 \\
f_1 \quad &w \quad (u + x) \quad (v + y) &= 0 \\
f_2 \quad &u + x \quad (v + y) &= 0
\end{align*}
\]
Signal relations are *first class entities* at the functional layer. Offers way to parametrise the relations:

$$
\text{foo2} :: \text{Int} \rightarrow \text{Real} \rightarrow \text{SR} (\text{Real, Real, Real})
$$

$$
\text{foo2} \ n \ k = \text{sigrel} \ (x_1, x_2, x_3) \ \text{where}
\begin{align*}
 f_1 \ n \ x_1 \ x_2 \ x_3 &= 0 \\
 f_2 \ x_2 \ x_3 &= k
\end{align*}
$$
Example: Resistor Model

\[\text{twoPin} :: SR (Pin, Pin, Voltage)\]
\[\text{twoPin} = \text{sigrel} (p, n, u) \text{ where}\]
\[u = p.v - n.v\]
\[p.i + n.i = 0\]

\[\text{resistor} :: \text{Resistance} \rightarrow SR (Pin, Pin)\]
\[\text{resistor } r = \text{sigrel} (p, n) \text{ where}\]
\[\text{twoPin } \diamond (p, n, u)\]
\[r \ast p.i = u\]
Equal number of equations and variables is a necessary condition for solvability. For a modular analysis, one might keep track of the balance in the signal relation type:

\[SR (\ldots) n \]
Equal number of equations and variables is a necessary condition for solvability. For a modular analysis, one might keep track of the balance in the signal relation type:

\[SR(\ldots) n \]

But very weak assurances:

\[
\begin{align*}
 f(x, y, z) &= 0 \\
 g(z) &= 0 \\
 h(z) &= 0
\end{align*}
\]
A system of equations is \textit{structurally singular} iff it is not possible to put variables and equations in a one-to-one correspondence such that each variable occurs in the equation it is related to.
A Possible Refinement (1)

A system of equations is *structurally singular* iff not possible to put variables and equations in a one-to-one correspondence such that each variable occurs in the equation it is related to.

Structural singularities are typically indicative of problems.
Structural singularities can be discovered by studying the \textit{incidence matrix}:

\begin{align*}
 f_1(x, y, z) &= 0 \\
 f_2(z) &= 0 \\
 f_3(z) &= 0
\end{align*}

\begin{equation}
 \begin{pmatrix}
 1 & 1 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 1
 \end{pmatrix}
\end{equation}
A Possible Refinement (3)

So maybe we can index signal relations with incidence matrices?

\[
\textit{foo} :: \text{SR (Real, Real, Real)} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}
\]

\[
\textit{foo} = \text{sigrel (x}_1, \ x_2, \ x_3) \quad \text{where}
\]

\[
f_1 \ x_1 \ x_2 \ x_3 = 0
\]

\[
f_2 \ x_2 \ x_3 \quad = 0
\]
Structural Type (1)

- The **Structural Type** represents information about which variables occur in which equations.
- Denoted by an incidence matrix.
- Two interrelated instances:
 - Structural type of a *system of equations*
 - Structural type of a *signal relation*
Structural Type (2)

- Structural type for composition of signal relations: *Straightforward*.
- The structural type of signal *relation* obtained by *abstraction* over the structural type of a system of equations: *Less straightforward*.
Recall

\[\text{foo} :: SR (\text{Real}, \text{Real}, \text{Real}) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \]

Consider

\[\text{foo} \diamond (u, v, w) \]
\[\text{foo} \diamond (w, u + x, v + y) \]

in a context with five variables \(u, v, w, x, y \).
The structural type for the equations obtained by instantiating \(foo\) is simply obtained by Boolean matrix multiplication. For \(foo \diamond (u, v, w)\):

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
\begin{array}{cccccc}
u & v & w & x & y \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}
\end{pmatrix}
=
\begin{pmatrix}
\begin{array}{cccccc}
u & v & w & x & y \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}
\end{pmatrix}
\]
For $foo \diamond (w, u + x, v + y)$:

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
u & v & w & x & y \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{pmatrix}
=
\begin{pmatrix}
u & v & w & x & y \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1
\end{pmatrix}
\]
Composition of Structural Types (4)

Complete incidence matrix and corresponding equations:

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
\end{pmatrix}
\]

\[
\begin{align*}
& f_1 \ u \ v \ w = 0 \\
& f_2 \ v \ w = 0 \\
& f_1 \ w \ (u + x) \ (v + y) = 0 \\
& f_2 \ (u + x) \ (v + y) = 0 \\
\end{align*}
\]
Abstraction over Structural Types (1)

Now consider encapsulating the equations:

\[
\text{bar} = \text{sigrel} (u, y) \quad \text{where}
\]
\[
\text{foo} \diamond (u, v, w)
\]
\[
\text{foo} \diamond (w, u + x, v + y)
\]

The equations of the body of \text{bar} needs to be partitioned into

- **Local Equations**: equations used to solve for the local variables
- **Interface Equations**: equations contributed to the outside
Abstraction over Structural Types (2)

How to partition?
Abstraction over Structural Types (2)

How to partition?

- *A priori local equations*: equations over local variables only.
How to partition?

- **A priori local equations**: equations over local variables only.
- **A priori interface equations**: equations over interface variables only.
Abstraction over Structural Types (2)

How to partition?

• **A priori local equations**: equations over local variables only.

• **A priori interface equations**: equations over interface variables only.

• **Mixed equations**: equations over local and interface variables.
Abstraction over Structural Types (2)

How to partition?

- **A priori local equations**: equations over local variables only.

- **A priori interface equations**: equations over interface variables only.

- **Mixed equations**: equations over local and interface variables.

Note: too few or too many local equations gives an opportunity to catch *locally underdetermined* or *overdetermined* systems of equations.
Abstraction over Structural Types (3)

In our case:
Abstraction over Structural Types (3)

In our case:

- We have 1 a priori local equation, 3 mixed equations
Abstraction over Structural Types (3)

In our case:

- We have 1 a priori local equation, 3 mixed equations
- We need to choose 3 local equations and 1 interface equation
Abstraction over Structural Types (3)

In our case:

- We have 1 a priori local equation, 3 mixed equations
- We need to choose 3 local equations and 1 interface equation
- Consequently, 3 possibilities, yielding the following possible structural types for $\bar{a}r$:

\[
\begin{pmatrix}
 u & y \\
 1 & 0 \\
\end{pmatrix},
\begin{pmatrix}
 u & y \\
 1 & 1 \\
\end{pmatrix},
\begin{pmatrix}
 u & y \\
 1 & 1 \\
\end{pmatrix}
\]
Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?
Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

• Assume the choice is free
Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

- Assume the choice is free
- Note that a type with more variable occurrences is “better” as it gives more freedom when pairing equations and variables. Thus discard choices that are subsumed by better choices.
Abstraction over Structural Types (4)

The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

- Assume the choice is free
- Note that a type with more variable occurrences is “better” as it gives more freedom when pairing equations and variables. Thus discard choices that are subsumed by better choices.
- As a last resort, approximate.
The two last possibilities are equivalent. But still leaves two distinct possibilities. How to choose?

- Assume the choice is free
- Note that a type with more variable occurrences is “better” as it gives more freedom when pairing equations and variables. Thus discard choices that are subsumed by better choices.
- As a last resort, approximate.

Details in the EOOLT’08 paper.
Also in the Paper

- A more realistic modelling example:

- Structural types for components of this model

- Examples of errors caught by the proposed method, but that would not have been found by just counting equations and variables.
Problems

• Structural types not at all intuitive.
• The matrix notation is potentially cumbersome.
• User would likely often have to provide declarations of structural type explicitly.
• Type-checking is (currently) expensive.
• Sensible meta theory?
Questions

• How much do structural types buy over variable-equation balance in practice? Worth the complexity?

• Is there some sensible middle ground between structural types and variable-equation balance that provides most of the benefits of structural types, but in a simpler way?