
The Yampa Arcade
Antony Courtney, Henrik Nilsson, and John Peterson

Yale University

New Haven, CT, USA

The Yampa Arcade – p.1/27

Functional Reactive Programming

Functional Reactive Programming (FRP)
• Framework for reactive programming in a

functional setting
• Systems described by composing signal

functions: functions mapping signals to
signals

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak)

Yampa is our latest implementation of FRP.

The Yampa Arcade – p.2/27

The Challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .

The Yampa Arcade – p.3/27

The Challenge

George Russel said on the Haskell GUI list:

. . . Things like getting an alien spaceship
to move slowly downward, moving
randomly to the left and right, and
bouncing off the walls, turned out to be a
major headache. Also I think I had to use
‘error’ to get the message out to the
outside world that the aliens had won. . . .

The Yampa Arcade – p.3/27

The Challenge

George Russel said on the Haskell GUI list:

My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”

The Yampa Arcade – p.3/27

What was wrong?

Possible reasons for George Russel’s reaction:

• Original reactive animation systems like Fran
and FAL lacked crucial features
Yampa attempts to address this [Haskell
Workshop ’02]

• Not many examples of good FRP code
around
The present paper attempts to address that

The Yampa Arcade – p.4/27

This talk

This talk tries to convey that FRP/Yampa
• is a reasonable approach for this kind of

applications
• has some unique advantages over other

approaches

The Yampa Arcade – p.5/27

The Game

The Yampa Arcade – p.6/27

Yampa

Our most recent FRP implementation is called
Yampa:

• Embedding in Haskell; i.e. a Haskell library.
• Arrows used as the basic structuring

framework.
• Advanced switching constructs allows for

description of systems with highly dynamic
structure.

The Yampa Arcade – p.7/27

Signal Functions

Key concept: functions on signals.

x y
f

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.

The Yampa Arcade – p.8/27

Signal Functions in Yampa

• Signal Functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

The Yampa Arcade – p.9/27

Signal Functions and State

Alternative view:

Functions on signals can encapsulate state.

f y (t)x (t)
state(t)][

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)

The Yampa Arcade – p.10/27

Describing Systems

Systems are described by combining signal
functions into more complex signal functions:

� � �

� � �

� �

The Yampa Arcade – p.11/27

Yampa and Arrows

Yampa uses John Hughes’ arrow framework.
Core Signal Function combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.

The Yampa Arcade – p.12/27

The Arrow Syntactic Sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat -< arr id -< exp

The Yampa Arcade – p.13/27

Describing the Alien Behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

The Yampa Arcade – p.14/27

Describing the Alien Behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

The Yampa Arcade – p.15/27

Describing the Alien Behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
The Yampa Arcade – p.16/27

Describing the Alien Behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

where

v0 = zeroVector
The Yampa Arcade – p.17/27

Overall Game Structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

The Yampa Arcade – p.18/27

Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

The Yampa Arcade – p.19/27

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27

The Game Core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))

The Yampa Arcade – p.21/27

Closing the Feedback Loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
The Yampa Arcade – p.22/27

Closing the Feedback Loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)

The Yampa Arcade – p.23/27

Other approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.

The Yampa Arcade – p.24/27

Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- captures common patterns
- packaged in a way that makes reuse very

easy
• Yampa allows state to be nicely encapsulated

by signal functions:
- avoids keeping track of all state globally
- adding more state is easy and usually does

not imply any major changes to type or
code structure

The Yampa Arcade – p.25/27

State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

The Yampa Arcade – p.26/27

Drawbacks of Yampa?

• Choosing the right switch can be tricky.
• Subtle issues concerning when to use e.g.
iPre, notYet.

• Syntax could be improved (with specialized
pre-processor).

The Yampa Arcade – p.27/27

	Functional Reactive Programming
	The Challenge
	What was wrong?
	This talk
	The Game
	Yampa
	Signal Functions
	Signal Functions in Yampa
	Signal Functions and State
	Describing Systems
	Yampa and Arrows
	The Arrow Syntactic Sugar
	Describing the Alien Behavior (1)
	Describing the Alien Behavior (2)
	Describing the Alien Behavior (3)
	Describing the Alien Behavior (4)
	Overall Game Structure
	Dynamic Signal Function Collections
		exttt {dpSwitch}
	The Game Core
	Closing the Feedback Loop (1)
	Closing the Feedback Loop (2)
	Other approaches?
	Why use Yampa, then?
	State in 	exttt {alien}
	Drawbacks of Yampa?

