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Functional Reactive Programming

Functional Reactive Programming (FRP)
• Framework for reactive programming in a

functional setting
• Systems described by composing signal

functions: functions mapping signals to
signals

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak)

Yampa is our latest implementation of FRP.
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The Challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .
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The Challenge

George Russel said on the Haskell GUI list:

. . . Things like getting an alien spaceship
to move slowly downward, moving
randomly to the left and right, and
bouncing off the walls, turned out to be a
major headache. Also I think I had to use
‘error’ to get the message out to the
outside world that the aliens had won. . . .
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The Challenge

George Russel said on the Haskell GUI list:

My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”
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What was wrong?

Possible reasons for George Russel’s reaction:

• Original reactive animation systems like Fran
and FAL lacked crucial features
Yampa attempts to address this [Haskell
Workshop ’02]

• Not many examples of good FRP code
around
The present paper attempts to address that
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This talk

This talk tries to convey that FRP/Yampa
• is a reasonable approach for this kind of

applications
• has some unique advantages over other

approaches
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The Game
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Yampa

Our most recent FRP implementation is called
Yampa:

• Embedding in Haskell; i.e. a Haskell library.
• Arrows used as the basic structuring

framework.
• Advanced switching constructs allows for

description of systems with highly dynamic
structure.
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Signal Functions

Key concept: functions on signals.

x y
f

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
f :: Signal T1 → Signal T2

Additionally: causality requirement.
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Signal Functions in Yampa

• Signal Functions are first class entities.
Intuition: SF α β ≈ Signal α →Signal β

• Signals are not first class entities: they only
exist indirectly through signal functions.

• The strict separation between signals and
signal functions distinguishes Yampa from
earlier FRP implementations.

The Yampa Arcade – p.9/27



Signal Functions and State

Alternative view:

Functions on signals can encapsulate state.

f y (t)x (t)
state(t)][

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful: y(t) depends on x(t) and state(t)

• Stateless: y(t) depends only on x(t)
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Describing Systems

Systems are described by combining signal
functions into more complex signal functions:

� � �

� � �

� �
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Yampa and Arrows

Yampa uses John Hughes’ arrow framework.
Core Signal Function combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Enough to express any conceivable “wiring”.
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The Arrow Syntactic Sugar

Using the basic combinators directly is often very
cumbersome. Ross Paterson’s syntactic sugar
for arrows provides a convenient alternative:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat -< arr id -< exp
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Describing the Alien Behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...
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Describing the Alien Behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...
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Describing the Alien Behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
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Describing the Alien Behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

where

v0 = zeroVector
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Overall Game Structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Dynamic Signal Function Collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The Yampa Arcade – p.20/27



dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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The Game Core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))
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Closing the Feedback Loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
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Closing the Feedback Loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)
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Other approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.
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Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- captures common patterns
- packaged in a way that makes reuse very

easy
• Yampa allows state to be nicely encapsulated

by signal functions:
- avoids keeping track of all state globally
- adding more state is easy and usually does

not imply any major changes to type or
code structure
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State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge
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Drawbacks of Yampa?

• Choosing the right switch can be tricky.
• Subtle issues concerning when to use e.g.
iPre, notYet.

• Syntax could be improved (with specialized
pre-processor).
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