
Declarative Reactive Abstractions
for Games

Paul Hudak Symposium
Yale University, 29 April 2016

Henrik Nilsson and Ivan Perez

School of Computer Science

University of Nottingham, UK

Declarative Reactive Abstractions for Games – p.1/30

Why Program Games Declaratively?

Video games are not a major application area for
declarative programming . . . or even a niche one.

Perhaps not so surprising:

• Many pragmatical reasons: performance,
legacy issues, . . .

• State and effects are pervasive in video
games: Is declarative programming even a
conceptually good fit?

Declarative Reactive Abstractions for Games – p.2/30

But Why NOT, Really?

Many eloquent and compelling cases for
functional programming in general:

• John Backus, 1977 ACM Turing Award
Lecture: Can Programming Be Liberated from
the von Neumann Style?

• John Hughes, recent retrospective: Why
Functional Programming Matters
(on YouTube, recommended)

One key point: Program with whole values, not a
word-at-a-time. (Will come back to this.)

Declarative Reactive Abstractions for Games – p.3/30

Possible Gains (1)

With his Keera Studios hat on, Ivan’s top three
reasons:

• Reliability.

• Lower long-term maintenance cost.

• Lower production cost and fast
time-to-prototype.

Declarative Reactive Abstractions for Games – p.4/30



Possible Gains (2)

High profile people in the games industry have
pointed out potential benefits:

• John D. Carmack, id Software:
Wolfenstein 3D, Doom, Quake

• Tim Sweeney, Epic Games:
The Unreal Engine

E.g. pure, declarative code:

• promotes parallelism

• eliminates many sources of errors

Declarative Reactive Abstractions for Games – p.5/30

“Whole Values” for Games?

How should we go about writing video games
“declaratively”?

In particular, what should those “whole values” be?

• Could be conventional entities like vectors,
arrays, lists and aggregates of such.

• Could even be things like pictures.

But we are going to go one step further and consider
programming with time-varying entities.

Declarative Reactive Abstractions for Games – p.6/30

Functional Reactive Programming

• Key idea: Don’t program one-time-step-at-a-time,
but describe an evolving entity as whole.

• FRP originated in Conal Elliott and Paul Hudak’s
work on Functional Reactive Animation (Fran).
Highly cited 1997 ICFP paper; ICFP award for
most influential paper in 2007.

• FRP has evolved in a number of directions
and into different concrete implementations.

• We will use Yampa: an FRP system
embedded in Haskell.

Declarative Reactive Abstractions for Games – p.7/30

Take-home Message # 1

Video games can be programmed declaratively
by describing what entities are over time.

Our whole values are things like:

• The totality of input from the player

• The animated graphics output

• The entire life of a game object

We construct and work with pure functions on these:

• The game: function from input to animation

• In the game: fixed point of function on
collection of game objects

Declarative Reactive Abstractions for Games – p.8/30



Take-home Message # 2

You too can program games declaratively . . . today!

Declarative Reactive Abstractions for Games – p.9/30

Take-home Game!

Or download one for free to your Android device!

Play Store: Pang-a-lambda (Keera Studios)
Declarative Reactive Abstractions for Games – p.10/30

Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure

Good fit for typical video games
(but not everything labelled “FRP” supports them all).

Declarative Reactive Abstractions for Games – p.11/30

Yampa

• FRP implementation embedded in Haskell

• Key notions:

- Signals: time-varying values

- Signal Functions: pure functions on signals

- Switching: temporal composition of signal
functions

• Programming model:

Declarative Reactive Abstractions for Games – p.12/30



Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t
must be determined by input on interval [0, t].

Declarative Reactive Abstractions for Games – p.13/30

Some Basic Signal Functions

identity :: SF a a

constant :: b → SF a b

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Declarative Reactive Abstractions for Games – p.14/30

Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.

Declarative Reactive Abstractions for Games – p.15/30

Systems

What about larger, more complicated networks?
How many combinators are needed?

John Hughes’s Arrow framework provides a
good answer!

Declarative Reactive Abstractions for Games – p.16/30



The Arrow framework (1)

arr f f ≫ g

first f loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
Declarative Reactive Abstractions for Games – p.17/30

The Arrow framework (2)

Examples:

identity :: SF a a

identity = arr id

constant :: b → SF a b

constant b = arr (const b)

<̂< ::(b → c)→ SF a b → SF a c

f <̂< sf = sf ≫ arr f

Declarative Reactive Abstractions for Games – p.18/30

Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

Only syntactic sugar:

everything translated into a

combinator expression.

Declarative Reactive Abstractions for Games – p.19/30

Oscillator from Pang-a-lambda

This oscillator determines the movement of
blocks:

osci ampl period = proc → do

rec

let a = −(2.0 ∗ pi / period) ↑ 2 ∗ p

v ← integral−≺ a

p ← (ampl+) <̂< integral−≺ v

returnA−≺ p

Direct transliteration of standard equations.

Declarative Reactive Abstractions for Games – p.20/30



A Bouncing Ball

Lots of bouncing balls in Pang-a-lambda!

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

Declarative Reactive Abstractions for Games – p.21/30

Modelling the Bouncing Ball: Part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall :: Pos → Vel → SF () (Pos ,Vel)

fallingBall y0 v0 = proc ()→ do

v ← (v0+) <̂< integral−≺ − 9.81

y ← (y0+) <̂< integral−≺ v

returnA−≺ (y , v)

Declarative Reactive Abstractions for Games – p.22/30

Events

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Some functions and event sources:

tag :: Event a → b → Event b

after :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

Declarative Reactive Abstractions for Games – p.23/30

Modelling the Bouncing Ball: Part 2

Detecting when the ball goes through the floor:

fallingBall ′ ::

Pos → Vel → SF () ((Pos ,Vel),Event (Pos ,Vel))

fallingBall ′ y0 v0 = proc ()→ do

yv@(y , )← fallingBall y0 v0−≺ ()

hit ← edge −≺ y 6 0

returnA−≺ (yv , hit ‘tag ‘ yv)

Declarative Reactive Abstractions for Games – p.24/30



Switching

Q: How and when do signal functions “start”?

A: • Switchers apply a signal functions to its
input signal at some point in time.

• This is temporal composition of signal
functions.

Switchers thus allow systems with varying
structure to be described.

Generalised switches allow composition of
collections of signal functions. Can be used to
model e.g. varying number of objects in a game.

Declarative Reactive Abstractions for Games – p.25/30

The Basic Switch

Idea:

• Allows one signal function to be replaced by
another.

• Switching takes place on the first occurrence
of the switching event source.

switch::
SF a (b,Event c)
→ (c → SF a b)
→ SF a b

Declarative Reactive Abstractions for Games – p.26/30

Modelling the Bouncing Ball: Part 3

Making the ball bounce:

bouncingBall :: Pos → SF () (Pos ,Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall ′ y0 v0 ) $ λ(y , v)→

bbAux y (−v)

Declarative Reactive Abstractions for Games – p.27/30

Game Objects
data Object = Object {objectName :: ObjectName

, objectKind :: ObjectKind

, objectPos :: Pos2D

, objectVel :: Vel2D

. . .

}

data ObjectKind = Ball . . . | Player . . . | . . .

data ObjectInput = ObjectInput

{userInput :: Controller

, collisions :: Collisions

}
Declarative Reactive Abstractions for Games – p.28/30



Overall Game Structure
gamePlay :: [ListSF ObjectInput Object ]

→ SF Controller ([Object ],Time)

gamePlay objs = loopPre [ ] $

proc (input , cs)→ do

let oi = ObjectInput input cs

ol ← dlSwitch objs−≺ oi

let cs ′ = detectCollisions ol

tLeft ← time−≺ ()

returnA−≺ ((ol , tLeft), cs ′)

ListSF and dlSwitch are related abstractions that
allow objects to die or spawn new ones.

Declarative Reactive Abstractions for Games – p.29/30

Conclusions

• FRP offers one way to write interactive games
and similar software in a declarative way.

• It allows systems to be described in terms of
whole values varying over time.

• Not covered in this talk:

- Not everything fit easily into the FRP
paradigm: e.g., interfacing to existing GUI
toolkits, other imperative APIs.

- But also such APIs can be given a “whole-value
treatment” to improve the fit within a declarative
setting. E.g. Reactive Values and Relations.

Declarative Reactive Abstractions for Games – p.30/30


	Why Program Games Declaratively?
	But Why {HLColor NOT}, Really?
	Possible Gains (1)
	Possible Gains (2)
	{}``Whole Values'' for Games?
	Functional Reactive Programming
	Take-home Message # 1
	Take-home Message # 2
	Take-home Game!
	Key FRP Features
	Yampa
	Signal Functions
	Some Basic Signal Functions
	Composition
	Systems
	The Arrow framework (1)
	The Arrow framework (2)
	Arrow notation
	Oscillator from Pang-a-lambda
	A Bouncing Ball
	Modelling the Bouncing Ball: Part 1
	Events
	Modelling the Bouncing Ball: Part 2
	Switching
	The Basic Switch
	Modelling the Bouncing Ball: Part 3
	Game Objects
	Overall Game Structure
	Conclusions

