
Declarative Game Programming

PPDP 2014
Distilled Tutorial

Henrik Nilsson and Ivan Perez

School of Computer Science

University of Nottingham, UK

PPDP 2014: Declarative Game Programming – p.1/52

Declarative Game Programming?

Video games are not a major application area for
declarative programming . . . or even a niche one.

• Many historical and pragmatical reasons

• More principled objection:

With state and effects being
pervasive in video games, is
declarative programming a good fit?

PPDP 2014: Declarative Game Programming – p.2/52

Take-home Message # 1

Video games can be programmed declaratively
by describing what game entities are over time,
not just at a point in time.

(We focus on the core game logic in the following:
there will often be code around the “edges” (e.g.,
rendering, interfacing to input devices) that may
not be very declarative, at least not in the sense
above.)

PPDP 2014: Declarative Game Programming – p.3/52

Take-home Message # 2

You too can program games declaratively . . . today!

PPDP 2014: Declarative Game Programming – p.4/52

This Tutorial

We will implement a Breakout-like game using:

• Functional Reactive Programming (FRP): a
paradigm for describing time-varying entities

• Simple DirectMedia Layer (SDL) for rendering
etc.

Focus on FRP as that is what we need for the
game logic. We will use Yampa:

http://hackage.haskell.org/package/Yampa-0.9.6

PPDP 2014: Declarative Game Programming – p.5/52

Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Idea: programming with time-varying entities.

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• Often realised as an Embedded
Domain-Specific Language (EDSL).

PPDP 2014: Declarative Game Programming – p.6/52

FRP Applications

Some domains where FRP or FRP-inspired
approaches have been used:

• Graphical Animation

• Robotics

• Vision

• Sound synthesis

• GUIs

• Virtual Reality Environments

•

PPDP 2014: Declarative Game Programming – p.7/52

Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure

Good fit for typical video games
(but not everything labelled “FRP” supports them all).

PPDP 2014: Declarative Game Programming – p.8/52

Yampa

• FRP implemenattion embedded in Haskell

• Key concepts:

- Signals: time-varying values

- Signal Functions: functions on signals

- Switching between signal functions

• Programming model:

PPDP 2014: Declarative Game Programming – p.9/52

Yampa?

Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
PPDP 2014: Declarative Game Programming – p.10/52

Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

PPDP 2014: Declarative Game Programming – p.11/52

Signal Functions and State

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:

• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

PPDP 2014: Declarative Game Programming – p.12/52

Some Basic Signal Functions

identity :: SF a a

constant :: b → SF a b

iPre :: a → SF a a

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Which are stateless and which are stateful?

PPDP 2014: Declarative Game Programming – p.13/52

Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.

PPDP 2014: Declarative Game Programming – p.14/52

Time

Quick exercise: Define time!

time :: SF a Time

time = constant 1.0 ≫ integral

Note: there is no built-in notion of global time in
Yampa: time is always local, measured from
when a signal function started.

PPDP 2014: Declarative Game Programming – p.15/52

Systems

What about larger networks?
How many combinators are needed?

John Hughes’s Arrow framework provides a
good answer!

PPDP 2014: Declarative Game Programming – p.16/52

The Arrow framework (1)

arr f f ≫ g

first f loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
PPDP 2014: Declarative Game Programming – p.17/52

The Arrow framework (2)

Examples:

identity :: SF a a

identity = arr id

constant :: b → SF a b

constant b = arr (const b)

<̂< ::(b → c)→ SF a b → SF a c

f <̂< sf = sf ≫ arr f

PPDP 2014: Declarative Game Programming – p.18/52

The Arrow framework (2)

Some derived combinators:

f ∗∗∗ g f&&&g

(∗∗∗) :: SF a b → SF c d → SF (a, c) (b, d)

(&&&) :: SF a b → SF a c → SF a (b, c)

PPDP 2014: Declarative Game Programming – p.19/52

Constructing a network

loop (arr (λ(x , y)→ ((x , y), x))

≫ (first f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))

PPDP 2014: Declarative Game Programming – p.20/52

Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x)

returnA−≺ y

PPDP 2014: Declarative Game Programming – p.21/52

A Bouncing Ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

PPDP 2014: Declarative Game Programming – p.22/52

Modelling the Bouncing Ball: Part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall :: Pos → Vel → SF () (Pos ,Vel)

fallingBall y0 v0 = proc ()→ do

v ← (v0+) <̂< integral−≺ − 9.81

y ← (y0+) <̂< integral−≺ v

returnA−≺ (y , v)

PPDP 2014: Declarative Game Programming – p.23/52

Discrete-time Signals or Events

Yampa’s signals are conceptually continuous-time
signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

PPDP 2014: Declarative Game Programming – p.24/52

Some Event Functions and Sources

tag :: Event a → b → Event b

never :: SF a (Event b)

now :: b → SF a (Event b)

after :: Time → b → SF a (Event b)

repeatedly :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

notYet :: SF (Event a) (Event a)

once :: SF (Event a) (Event a)

PPDP 2014: Declarative Game Programming – p.25/52

Modelling the Bouncing Ball: Part 2

Detecting when the ball goes through the floor:

fallingBall ′ ::

Pos → Vel → SF () ((Pos ,Vel),Event (Pos ,Vel))

fallingBall ′ y0 v0 = proc ()→ do

yv@(y ,)← fallingBall y0 v0−≺ ()

hit ← edge −≺ y 6 0

returnA−≺ (yv , hit ‘tag ‘ yv)

PPDP 2014: Declarative Game Programming – p.26/52

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

PPDP 2014: Declarative Game Programming – p.27/52

The Basic Switch

Idea:

• Allows one signal function to be replaced by
another.

• Switching takes place on the first occurrence
of the switching event source.

switch::
SF a (b,Event c)
→ (c → SF a b)
→ SF a b

PPDP 2014: Declarative Game Programming – p.28/52

Modelling the Bouncing Ball: Part 3

Making the ball bounce:

bouncingBall :: Pos → SF () (Pos ,Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall ′ y0 v0) $ λ(y , v)→

bbAux y (−v)

PPDP 2014: Declarative Game Programming – p.29/52

Simulation of the Bouncing Ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

PPDP 2014: Declarative Game Programming – p.30/52

Modelling Using Impulses

Using a switch to capture the interaction between
the ball and the floor may seem unnatural.

A more appropriate account is that an impulsive
force is acting on the ball for a short time.

This can be abstracted into Dirac Impulses:
impulses that act instantaneously (Nilsson 2003).

Yampa does provide a derived version of
integral capturing the basic idea:

impulseIntegral ::

VectorSpace a k ⇒

SF (a,Event a) a
PPDP 2014: Declarative Game Programming – p.31/52

The Decoupled Switch

dSwitch ::

SF a (b,Event c)

→ (c → SF a b)

→ SF a b

• Output at the point of switch is taken from the
old subordinate signal function, not the new
residual signal function.

• Output at the current point in time thus
independent of whether or not the switching
event occurs at that point. Hence decoupled.
Useful e.g. in some feedback scenarios.

PPDP 2014: Declarative Game Programming – p.32/52

Lots of Switches . . .

rSwitch, drSwitch ::

SF a b → SF (a,Event (SF a b)) b

kSwitch, dkSwitch ::

SF a b → SF (a, b) (Event c)

→ (SF a b → c → SF a b)→ SF a b

pSwitch, dpSwitch, rpSwitch, drpSwitch :: . . .

However, they can all be defined in terms of switch
or dSwitch and a notion of ageing signal functions:

age :: SF a b → SF a (b,SF a b)

PPDP 2014: Declarative Game Programming – p.33/52

Game Objects (1)

Observable aspects of game entities:

data Object = Object {

objectName :: ObjectName,

objectKind :: ObjectKind ,

objectPos :: Pos2D ,

objectVel :: Vel2D ,

objectAcc :: Acc2D ,

objectDead :: Bool ,

objectHit :: Bool ,

. . .

}
PPDP 2014: Declarative Game Programming – p.34/52

Game Objects (2)

data ObjectKind = Ball Double

| Paddle Size2D

| Block Energy Size2D

| Side Side

PPDP 2014: Declarative Game Programming – p.35/52

Game Objects (3)

type ObjectSF = SF ObjectInput ObjectOutput

data ObjectInput = ObjectInput {

userInput :: Controller ,

collisions :: [Collision],

knownObjects :: [Object]

}

data ObjectOutput = ObjectOutput {

outputObject :: Object ,

harakiri :: Event ()

}
PPDP 2014: Declarative Game Programming – p.36/52

Observing the Game World

• Note that [Object] appears in the input type.

• This allows each game object to observe all
live game objects.

• Similarly, [Collision] allows interactions
between game objects to be observed.

• Typically achieved through delayed feedback
to ensure the feedback is well-defined:

loopPre :: c → SF (a, c) (b, c)→ SF a b

loopPre c_init sf =

loop (second (iPre c_init) ≫ sf)
PPDP 2014: Declarative Game Programming – p.37/52

Paddle, Take 1

objPaddle :: ObjectSF

objPaddle = proc (ObjectInput ci cs os)→ do

let name = "paddle"

let isHit = inCollision name cs

let p = refPosPaddle ci

v ← derivative−≺ p

returnA−≺ livingObject $Object {

objectName = name,

objectPos = p,

objectVel = v ,

. . .}
PPDP 2014: Declarative Game Programming – p.38/52

Paddle, Take 2

objPaddle :: ObjectSF

objPaddle = proc (ObjectInput ci cs os)→ do

let name = "paddle"

let isHit = inCollision name cs

rec

let v = limitNorm (20.0 ∗ˆ (refPosPaddle ci

−̂̂ p))

maxVNorm

p ← (initPosPaddle +̂̂) <̂< integral−≺ v

returnA−≺ livingObject $Object { . . .}

PPDP 2014: Declarative Game Programming – p.39/52

Ball, Take 1

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

objBall

followPaddleDetectLaunch = proc oi → do

o ← followPaddle−≺ oi

click ← edge −≺ controllerClick

(userInput oi)

returnA−≺ (o, click ‘tag ‘ (objectPos

(outputObject o)))

PPDP 2014: Declarative Game Programming – p.40/52

Ball, Take 2

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

switch (freeBall p initBallVel&&&never) $ λ →

objBall

freeBall p0 v0 = proc (ObjectInput ci cs os)→ do

p ← (p0 +̂̂) <̂< integral−≺ v0 ′

returnA−≺ livingObject $ { . . .}

where

v0 ′ = limitNorm v0 maxVNorm

PPDP 2014: Declarative Game Programming – p.41/52

Ball, Take 3

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

switch (bounceAroundDetectMiss p) $ λ →

objBall

bounceAroundDetectMiss p = proc oi → do

o ← bouncingBall p initBallVel−≺ oi

miss ← collisionWithBottom −≺ collisions oi

returnA−≺ (o,miss)

PPDP 2014: Declarative Game Programming – p.42/52

Making the Ball Bounce

bouncingBall p0 v0 =

switch (moveFreelyDetBounce p0 v0) $ λ(p ′, v ′)→

bouncingBall p ′ v ′

moveFreelyDetBounce p0 v0 =

proc oi@(ObjectInput cs)→ do

o ← freeBall p0 v0−≺ oi

ev ← edgeJust ≪ initially Nothing

−≺ changedVelocity "ball" cs

returnA−≺ (o, fmap (λv → (objectPos (. . . o), v))

ev)

PPDP 2014: Declarative Game Programming – p.43/52

Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

We want blocks to disappear!

• What about state?

PPDP 2014: Declarative Game Programming – p.44/52

Typical Overall Game Structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

PPDP 2014: Declarative Game Programming – p.45/52

Dynamic Signal Function Collections

Idea:

• Switch over collections of signal functions.

• On event, “freeze” running signal functions
into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.

PPDP 2014: Declarative Game Programming – p.46/52

dpSwitch

Need ability to express:

• How input routed to each signal function.

• When collection changes shape.

• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

PPDP 2014: Declarative Game Programming – p.47/52

Routing

Idea:

• The routing function decides which parts of
the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

PPDP 2014: Declarative Game Programming – p.48/52

The Routing Function Type

Universal quantification over the collection
members:

Functor col ⇒

(forall sf ◦ (a → col sf → col (b, sf)))

Collection members thus opaque:

• Ensures only signal function instances from
argument can be returned.

• Unfortunately, does not prevent duplication or
discarding of signal function instances.

PPDP 2014: Declarative Game Programming – p.49/52

Blocks

objBlockAt (x , y) (w , h) =

proc (ObjectInput ci cs os)→ do

let name = "blockat"++ show (x , y)

isHit = inCollision name cs

hit ← edge −≺ isHit

lives ← accumHoldBy (+) 3−≺ (hit ‘tag ‘ (−1))

let isDead = lives 6 0

dead ← edge−≺ isDead

returnA−≺ ObjectOutput

(Object { . . .})

dead
PPDP 2014: Declarative Game Programming – p.50/52

The Game Core

processMovement ::

[ObjectSF]→ SF ObjectInput (IL ObjectOutput)

processMovement objs =

dpSwitchB objs

(noEvent −→ arr suicidalSect)

(λsfs ′ f → processMovement ′ (f sfs ′))

loopPre ([], [], 0) $

adaptInput

≫ processMovement objs

≫ (arr elemsIL&&&detectCollisions)

PPDP 2014: Declarative Game Programming – p.51/52

Recovering Blocks

objBlockAt (x , y) (w , h) =

proc (ObjectInput ci cs os)→ do

let name = "blockat"++ show (x , y)

isHit = inCollision name cs

hit ← edge −≺ isHit

recover ← delayEvent 5.0−≺ hit

lives ← accumHoldBy (+) 3

−≺ (hit ‘tag ‘ (−1)

‘lMerge‘ recover ‘tag ‘ 1)

. . .

PPDP 2014: Declarative Game Programming – p.52/52

	Declarative Game Programming?
	Take-home Message # 1
	Take-home Message # 2
	This Tutorial
	Functional Reactive Programming
	FRP Applications
	Key FRP Features
	Yampa
	Yampa?
	Signal Functions
	Signal Functions and State
	Some Basic Signal Functions
	Composition
	Time
	Systems
	The Arrow framework (1)
	The Arrow framework (2)
	The Arrow framework (2)
	Constructing a network
	Arrow notation
	A Bouncing Ball
	Modelling the Bouncing Ball: Part 1
	Discrete-time Signals or Events
	Some Event Functions and Sources
	Modelling the Bouncing Ball: Part 2
	Switching
	The Basic Switch
	Modelling the Bouncing Ball: Part 3
	Simulation of the Bouncing Ball
	Modelling Using Impulses
	The Decoupled Switch
	Lots of Switches ldots
	Game Objects (1)
	Game Objects (2)
	Game Objects (3)
	Observing the Game World
	Paddle, Take 1
	Paddle, Take 2
	Ball, Take 1
	Ball, Take 2
	Ball, Take 3
	Making the Ball Bounce
	Highly dynamic system structure?
	Typical Overall Game Structure
	Dynamic Signal Function Collections
		exttt {dpSwitch}
	Routing
	The Routing Function Type
	Blocks
	The Game Core
	Recovering Blocks

