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Declarative Game Programming?

Video games are not a major application area for
declarative programming . . . or even a niche one.

• Many historical and pragmatical reasons

• More principled objection:

With state and effects being
pervasive in video games, is
declarative programming a good fit?
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Take-home Message # 1

Video games can be programmed declaratively
by describing what game entities are over time,
not just at a point in time.

(We focus on the core game logic in the following:
there will often be code around the “edges” (e.g.,
rendering, interfacing to input devices) that may
not be very declarative, at least not in the sense
above.)
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Take-home Message # 2

You too can program games declaratively . . . today!
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This Tutorial

We will implement a Breakout-like game using:

• Functional Reactive Programming (FRP): a
paradigm for describing time-varying entities

• Simple DirectMedia Layer (SDL) for rendering
etc.

Focus on FRP as that is what we need for the
game logic. We will use Yampa:

http://hackage.haskell.org/package/Yampa-0.9.6
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Functional Reactive Programming

What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Idea: programming with time-varying entities.

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• Often realised as an Embedded
Domain-Specific Language (EDSL).
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FRP Applications

Some domains where FRP or FRP-inspired
approaches have been used:

• Graphical Animation

• Robotics

• Vision

• Sound synthesis

• GUIs

• Virtual Reality Environments

•
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Key FRP Features

Combines conceptual simplicity of the synchronous
data flow approach with the flexibility and abstraction
power of higher-order functional programming:

• Synchronous

• First class temporal abstractions

• Hybrid: mixed continuous and discrete time

• Dynamic system structure

Good fit for typical video games
(but not everything labelled “FRP” supports them all).
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Yampa

• FRP implemenattion embedded in Haskell

• Key concepts:

- Signals: time-varying values

- Signal Functions: functions on signals

- Switching between signal functions

• Programming model:
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Yampa?

Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal Functions

Intuition:

Time ≈ R

Signal a ≈ Time → a
x :: Signal T1
y :: Signal T2
SF a b ≈ Signal a → Signal b
f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
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Signal Functions and State

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:

• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)
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Some Basic Signal Functions

identity :: SF a a

constant :: b → SF a b

iPre :: a → SF a a

integral :: VectorSpace a s ⇒ SF a a

y(t) =

t∫

0

x(τ) dτ

Which are stateless and which are stateful?
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Composition

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator that captures this idea:

(≫) :: SF a b → SF b c → SF a c

Signal functions are the primary notion; signals a
secondary one, only existing indirectly.
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Time

Quick exercise: Define time!

time :: SF a Time

time = constant 1.0 ≫ integral

Note: there is no built-in notion of global time in
Yampa: time is always local, measured from
when a signal function started.
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Systems

What about larger networks?
How many combinators are needed?

John Hughes’s Arrow framework provides a
good answer!
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The Arrow framework (1)

arr f f ≫ g

first f loop f

arr :: (a → b)→ SF a b

(≫) :: SF a b → SF b c → SF a c

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b
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The Arrow framework (2)

Examples:

identity :: SF a a

identity = arr id

constant :: b → SF a b

constant b = arr (const b)

<̂< ::(b → c)→ SF a b → SF a c

f <̂< sf = sf ≫ arr f
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The Arrow framework (2)

Some derived combinators:

f ∗∗∗ g f&&&g

(∗∗∗) :: SF a b → SF c d → SF (a, c) (b, d)

(&&&) :: SF a b → SF a c → SF a (b, c)
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Constructing a network

loop (arr (λ(x , y)→ ((x , y), x ))

≫ (first f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))
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Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y
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A Bouncing Ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)
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Modelling the Bouncing Ball: Part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall :: Pos → Vel → SF () (Pos ,Vel)

fallingBall y0 v0 = proc ()→ do

v ← (v0+) <̂< integral−≺ − 9.81

y ← (y0+) <̂< integral−≺ v

returnA−≺ (y , v)
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Discrete-time Signals or Events

Yampa’s signals are conceptually continuous-time
signals.

Discrete-time signals: signals defined at
discrete points in time.

Yampa models discrete-time signals by lifting the
co-domain of signals using an option-type:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).
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Some Event Functions and Sources

tag :: Event a → b → Event b

never :: SF a (Event b)

now :: b → SF a (Event b)

after :: Time → b → SF a (Event b)

repeatedly :: Time → b → SF a (Event b)

edge :: SF Bool (Event ())

notYet :: SF (Event a) (Event a)

once :: SF (Event a) (Event a)
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Modelling the Bouncing Ball: Part 2

Detecting when the ball goes through the floor:

fallingBall ′ ::

Pos → Vel → SF () ((Pos ,Vel),Event (Pos ,Vel))

fallingBall ′ y0 v0 = proc ()→ do

yv@(y , )← fallingBall y0 v0−≺ ()

hit ← edge −≺ y 6 0

returnA−≺ (yv , hit ‘tag ‘ yv)
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Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance.

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

PPDP 2014: Declarative Game Programming – p.27/52

The Basic Switch

Idea:

• Allows one signal function to be replaced by
another.

• Switching takes place on the first occurrence
of the switching event source.

switch::
SF a (b,Event c)
→ (c → SF a b)
→ SF a b
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Modelling the Bouncing Ball: Part 3

Making the ball bounce:

bouncingBall :: Pos → SF () (Pos ,Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall ′ y0 v0 ) $ λ(y , v)→

bbAux y (−v)
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Simulation of the Bouncing Ball
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Modelling Using Impulses

Using a switch to capture the interaction between
the ball and the floor may seem unnatural.

A more appropriate account is that an impulsive
force is acting on the ball for a short time.

This can be abstracted into Dirac Impulses:
impulses that act instantaneously (Nilsson 2003).

Yampa does provide a derived version of
integral capturing the basic idea:

impulseIntegral ::

VectorSpace a k ⇒

SF (a,Event a) a
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The Decoupled Switch

dSwitch ::

SF a (b,Event c)

→ (c → SF a b)

→ SF a b

• Output at the point of switch is taken from the
old subordinate signal function, not the new
residual signal function.

• Output at the current point in time thus
independent of whether or not the switching
event occurs at that point. Hence decoupled.
Useful e.g. in some feedback scenarios.
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Lots of Switches . . .

rSwitch, drSwitch ::

SF a b → SF (a,Event (SF a b)) b

kSwitch, dkSwitch ::

SF a b → SF (a, b) (Event c)

→ (SF a b → c → SF a b)→ SF a b

pSwitch, dpSwitch, rpSwitch, drpSwitch :: . . .

However, they can all be defined in terms of switch
or dSwitch and a notion of ageing signal functions:

age :: SF a b → SF a (b,SF a b)
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Game Objects (1)

Observable aspects of game entities:

data Object = Object {

objectName :: ObjectName,

objectKind :: ObjectKind ,

objectPos :: Pos2D ,

objectVel :: Vel2D ,

objectAcc :: Acc2D ,

objectDead :: Bool ,

objectHit :: Bool ,

. . .

}
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Game Objects (2)

data ObjectKind = Ball Double

| Paddle Size2D

| Block Energy Size2D

| Side Side
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Game Objects (3)

type ObjectSF = SF ObjectInput ObjectOutput

data ObjectInput = ObjectInput {

userInput :: Controller ,

collisions :: [Collision ],

knownObjects :: [Object ]

}

data ObjectOutput = ObjectOutput {

outputObject :: Object ,

harakiri :: Event ()

}
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Observing the Game World

• Note that [Object ] appears in the input type.

• This allows each game object to observe all
live game objects.

• Similarly, [Collision ] allows interactions
between game objects to be observed.

• Typically achieved through delayed feedback
to ensure the feedback is well-defined:

loopPre :: c → SF (a, c) (b, c)→ SF a b

loopPre c_init sf =

loop (second (iPre c_init) ≫ sf )
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Paddle, Take 1

objPaddle :: ObjectSF

objPaddle = proc (ObjectInput ci cs os)→ do

let name = "paddle"

let isHit = inCollision name cs

let p = refPosPaddle ci

v ← derivative−≺ p

returnA−≺ livingObject $Object {

objectName = name,

objectPos = p,

objectVel = v ,

. . .}
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Paddle, Take 2

objPaddle :: ObjectSF

objPaddle = proc (ObjectInput ci cs os)→ do

let name = "paddle"

let isHit = inCollision name cs

rec

let v = limitNorm (20.0 ∗ˆ (refPosPaddle ci

−̂̂ p))

maxVNorm

p ← (initPosPaddle +̂̂ ) <̂< integral−≺ v

returnA−≺ livingObject $Object { . . .}
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Ball, Take 1

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

objBall

followPaddleDetectLaunch = proc oi → do

o ← followPaddle−≺ oi

click ← edge −≺ controllerClick

(userInput oi)

returnA−≺ (o, click ‘tag ‘ (objectPos

(outputObject o)))
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Ball, Take 2

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

switch (freeBall p initBallVel&&&never) $ λ →

objBall

freeBall p0 v0 = proc (ObjectInput ci cs os)→ do

p ← (p0 +̂̂ ) <̂< integral−≺ v0 ′

returnA−≺ livingObject $ { . . .}

where

v0 ′ = limitNorm v0 maxVNorm
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Ball, Take 3

objBall :: ObjectSF

objBall =

switch followPaddleDetectLaunch $ λp →

switch (bounceAroundDetectMiss p) $ λ →

objBall

bounceAroundDetectMiss p = proc oi → do

o ← bouncingBall p initBallVel−≺ oi

miss ← collisionWithBottom −≺ collisions oi

returnA−≺ (o,miss)
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Making the Ball Bounce

bouncingBall p0 v0 =

switch (moveFreelyDetBounce p0 v0 ) $ λ(p ′, v ′)→

bouncingBall p ′ v ′

moveFreelyDetBounce p0 v0 =

proc oi@(ObjectInput cs )→ do

o ← freeBall p0 v0−≺ oi

ev ← edgeJust ≪ initially Nothing

−≺ changedVelocity "ball" cs

returnA−≺ (o, fmap (λv → (objectPos (. . . o), v))

ev)
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Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

We want blocks to disappear!

• What about state?
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Typical Overall Game Structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Dynamic Signal Function Collections

Idea:

• Switch over collections of signal functions.

• On event, “freeze” running signal functions
into collection of signal function continuations,
preserving encapsulated state.

• Modify collection as needed and switch back in.
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dpSwitch

Need ability to express:

• How input routed to each signal function.

• When collection changes shape.

• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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Routing

Idea:

• The routing function decides which parts of
the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,
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The Routing Function Type

Universal quantification over the collection
members:

Functor col ⇒

(forall sf ◦ (a → col sf → col (b, sf )))

Collection members thus opaque:

• Ensures only signal function instances from
argument can be returned.

• Unfortunately, does not prevent duplication or
discarding of signal function instances.
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Blocks

objBlockAt (x , y) (w , h) =

proc (ObjectInput ci cs os)→ do

let name = "blockat"++ show (x , y)

isHit = inCollision name cs

hit ← edge −≺ isHit

lives ← accumHoldBy (+) 3−≺ (hit ‘tag ‘ (−1))

let isDead = lives 6 0

dead ← edge−≺ isDead

returnA−≺ ObjectOutput

(Object { . . .})

dead
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The Game Core

processMovement ::

[ObjectSF ]→ SF ObjectInput (IL ObjectOutput)

processMovement objs =

dpSwitchB objs

(noEvent −→ arr suicidalSect)

(λsfs ′ f → processMovement ′ (f sfs ′))

loopPre ([ ], [ ], 0) $

adaptInput

≫ processMovement objs

≫ (arr elemsIL&&&detectCollisions)
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Recovering Blocks

objBlockAt (x , y) (w , h) =

proc (ObjectInput ci cs os)→ do

let name = "blockat"++ show (x , y)

isHit = inCollision name cs

hit ← edge −≺ isHit

recover ← delayEvent 5.0−≺ hit

lives ← accumHoldBy (+) 3

−≺ (hit ‘tag ‘ (−1)

‘lMerge‘ recover ‘tag ‘ 1)

. . .
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