
All You Need Are Functions

A Brief Introduction to Functional

Programming in Haskell

SPGS 14 November 2016

Henrik Nilsson

Functional Programming Laboratory, School of Computer Science

University of Nottingham, UK

All You Need Are Functions – p.1/32

Outline

• Why programming language research?

• What is functional programming and how is it
different?

• A Taste of Haskell: A Pure, Lazy, Functional
Language

• Some real-world examples (games!)

All You Need Are Functions – p.2/32

The Functional Programming Lab (1)

What do we do?

All You Need Are Functions – p.3/32

The Functional Programming Lab (1)

What do we do?

Programming language research, with a focus on
functional languages, into:

All You Need Are Functions – p.3/32

The Functional Programming Lab (1)

What do we do?

Programming language research, with a focus on
functional languages, into:

• Foundations: Underpinning mathematical
principles

All You Need Are Functions – p.3/32

The Functional Programming Lab (1)

What do we do?

Programming language research, with a focus on
functional languages, into:

• Foundations: Underpinning mathematical
principles

• Language Design

All You Need Are Functions – p.3/32

The Functional Programming Lab (1)

What do we do?

Programming language research, with a focus on
functional languages, into:

• Foundations: Underpinning mathematical
principles

• Language Design

• Applications

All You Need Are Functions – p.3/32

The Functional Programming Lab (1)

What do we do?

Programming language research, with a focus on
functional languages, into:

• Foundations: Underpinning mathematical
principles

• Language Design

• Applications

These inform one another.

All You Need Are Functions – p.3/32

The Functional Programming Lab (2)

Why?

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

Better?

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

Better? Many aspects, including:

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

Better? Many aspects, including:

• Fewer (preferably no!) software errors or “bugs”.

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

Better? Many aspects, including:

• Fewer (preferably no!) software errors or “bugs”.

• More reusable.

All You Need Are Functions – p.4/32

The Functional Programming Lab (2)

Why?

• It’s scientifically interesting! For example,
some of the foundational research touches on
the very foundations of mathematics itself.

• Want to make it easier to write better programs.

Better? Many aspects, including:

• Fewer (preferably no!) software errors or “bugs”.

• More reusable.

• More maintainable.
All You Need Are Functions – p.4/32

The Cost of Software Errors

All You Need Are Functions – p.5/32

The Cost of Software Errors

• Cambridge University study (2012):

- $312 billion

- Half of development effort spent on finding
and fixing errors

All You Need Are Functions – p.5/32

The Cost of Software Errors

• Cambridge University study (2012):

- $312 billion

- Half of development effort spent on finding
and fixing errors

• Google estimates of cost per bug:

- Unit test: $5

- Full build: $50

- Integration test: $500

- System test: $5000

All You Need Are Functions – p.5/32

The Cost of Software Errors

• Cambridge University study (2012):

- $312 billion

- Half of development effort spent on finding
and fixing errors

• Google estimates of cost per bug:

- Unit test: $5

- Full build: $50

- Integration test: $500

- System test: $5000

The cost of bugs that make it into “the wild”?

All You Need Are Functions – p.5/32

(In)famous Bugs (1)

All You Need Are Functions – p.6/32

(In)famous Bugs (1)

• 1985–1987: Therac-25: Radiation therapy
machine. At least six fatal overdoses. Bug
occurred very rarely, slowing its discovery.

All You Need Are Functions – p.6/32

(In)famous Bugs (1)

• 1985–1987: Therac-25: Radiation therapy
machine. At least six fatal overdoses. Bug
occurred very rarely, slowing its discovery.

• 1996: First test flight of Ariane 5 failed with
rocket self-destructing, including $500-million
satellite payload. Cause: numerical overflow.

All You Need Are Functions – p.6/32

(In)famous Bugs (1)

• 1985–1987: Therac-25: Radiation therapy
machine. At least six fatal overdoses. Bug
occurred very rarely, slowing its discovery.

• 1996: First test flight of Ariane 5 failed with
rocket self-destructing, including $500-million
satellite payload. Cause: numerical overflow.

• 1998: NASA’s $665-million Mars Climate
Orbiter fails to enter orbit. Burns in Mars’s
atmosphere instead.
Reason?

All You Need Are Functions – p.6/32

(In)famous Bugs (1)

• 1985–1987: Therac-25: Radiation therapy
machine. At least six fatal overdoses. Bug
occurred very rarely, slowing its discovery.

• 1996: First test flight of Ariane 5 failed with
rocket self-destructing, including $500-million
satellite payload. Cause: numerical overflow.

• 1998: NASA’s $665-million Mars Climate
Orbiter fails to enter orbit. Burns in Mars’s
atmosphere instead.
Reason? Someone forgot to convert from
imperial to metric units.

All You Need Are Functions – p.6/32

(In)famous Bugs (2)

• 2015: 3200 US prisoners released on
average 49 days early due to software glitch.
System had been in operation since 2002.

All You Need Are Functions – p.7/32

(In)famous Bugs (2)

• 2015: 3200 US prisoners released on
average 49 days early due to software glitch.
System had been in operation since 2002.

• 2015: Starbucks point-of-sales systems down,
making it impossible to accept payment.
Many happy customers get drinks for free.
Cost to Starbucks: A few million dollars.

All You Need Are Functions – p.7/32

(In)famous Bugs (2)

• 2015: 3200 US prisoners released on
average 49 days early due to software glitch.
System had been in operation since 2002.

• 2015: Starbucks point-of-sales systems down,
making it impossible to accept payment.
Many happy customers get drinks for free.
Cost to Starbucks: A few million dollars.

Many and diverse reasons for failures: no one
solution. But better programming language
technology could have prevented some; e.g. the
Mars orbiter crash.

All You Need Are Functions – p.7/32

Declarative Programming (1)

Wikipedia:

Declarative programming is a programming
paradigm [style] that expresses the logic
of a computation without describing its
control flow.

All You Need Are Functions – p.8/32

Declarative Programming (1)

Wikipedia:

Declarative programming is a programming
paradigm [style] that expresses the logic
of a computation without describing its
control flow.

To put this differently: more what (logic), less
how (control).

All You Need Are Functions – p.8/32

Declarative Programming (2)

How can that help?

All You Need Are Functions – p.9/32

Declarative Programming (2)

How can that help?

• Clearer, more concise programs (as fewer
details to worry about).

All You Need Are Functions – p.9/32

Declarative Programming (2)

How can that help?

• Clearer, more concise programs (as fewer
details to worry about).

• Easier to prove programs correct.

All You Need Are Functions – p.9/32

Declarative Programming (2)

How can that help?

• Clearer, more concise programs (as fewer
details to worry about).

• Easier to prove programs correct.

Functional Programming is a type of
declarative programming where programs are
built exclusively from functions and function
application.

All You Need Are Functions – p.9/32

Declarative Programming (2)

How can that help?

• Clearer, more concise programs (as fewer
details to worry about).

• Easier to prove programs correct.

Functional Programming is a type of
declarative programming where programs are
built exclusively from functions and function
application.

In particular, functions in the basic mathematical
sense: equational reasoning is applicable.

All You Need Are Functions – p.9/32

List of Squares: Python (1)

def squares(m,n):

ss = []

for i in range(m, n + 1):

ss.append(i * i)

return ss

All You Need Are Functions – p.10/32

List of Squares: Python (1)

def squares(m,n):

ss = []

for i in range(m, n + 1):

ss.append(i * i)

return ss

>>> squares(1,5)

All You Need Are Functions – p.10/32

List of Squares: Python (1)

def squares(m,n):

ss = []

for i in range(m, n + 1):

ss.append(i * i)

return ss

>>> squares(1,5)

???

All You Need Are Functions – p.10/32

List of Squares: Python (1)

def squares(m,n):

ss = []

for i in range(m, n + 1):

ss.append(i * i)

return ss

>>> squares(1,5)

[1, 4, 9, 16, 25]

All You Need Are Functions – p.10/32

List of Squares: Python (2)

def squares(m,n):

ss = []

for i in range(m, n + 1):

ss.append(i * i)

return ss

Note:

• Step-by-step description of the algorithm:
explicit control flow; “how”.

• The result list is constructed one element at a
time.

All You Need Are Functions – p.11/32

List of Squares: Haskell

squares m n

| m > n = []

| otherwise = m*m : squares (m+1) n

> squares 1 5

[1, 4, 9, 16, 25]

Note:

• Direct statement of what the list of squares is.

• Recursion.

• The result list is expressed as a whole.

All You Need Are Functions – p.12/32

Other differences: Function Types

Python:
>>> type(squares)

<type ’function’>

squares is a function, but we’re not told what
the types of its arguments and result are.

All You Need Are Functions – p.13/32

Other differences: Function Types

Python:
>>> type(squares)

<type ’function’>

squares is a function, but we’re not told what
the types of its arguments and result are.

Haskell:
> :type squares

squares :: (Num a,Ord a) => a -> a -> [a]

For any numeric type a, squares is a function
from two numbers of type a returning a list of
numbers of the same type a.

All You Need Are Functions – p.13/32

Other differences: Polymorphism

Python:
>>> squares(1.0, 5.0)

All You Need Are Functions – p.14/32

Other differences: Polymorphism

Python:
>>> squares(1.0, 5.0)

???

All You Need Are Functions – p.14/32

Other differences: Polymorphism

Python:
>>> squares(1.0, 5.0)

TypeError: range() integer end

argument expected, got float.

All You Need Are Functions – p.14/32

Other differences: Polymorphism

Python:
>>> squares(1.0, 5.0)

TypeError: range() integer end

argument expected, got float.

Haskell:
> squares 1.0 5.0

[1.0, 4.0, 9.0, 16.0, 25.0]

All You Need Are Functions – p.14/32

Other differences: Polymorphism

Python:
>>> squares(1.0, 5.0)

TypeError: range() integer end

argument expected, got float.

Haskell:
> squares 1.0 5.0

[1.0, 4.0, 9.0, 16.0, 25.0]

The Haskell version of squares is polymorphic,
or “of many shapes”: in this case, works for any
numeric type as all we assumed was multiplication
and addition.

All You Need Are Functions – p.14/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

???

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

>>>

The definition of foo is accepted!

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

>>>

The definition of foo is accepted!
>>> foo()

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

>>>

The definition of foo is accepted!
>>> foo()

???

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (1)

Python:
def foo():

return squares([2,3,5,7])

>>>

The definition of foo is accepted!
>>> foo()

TypeError: squares() takes exactly

2 arguments (1 given)

The error only caught when we attempt to run foo.

All You Need Are Functions – p.15/32

Dynamic vs. Static Typing (2)

Haskell:
> foo () = squares [(2::Int),3,5,7]

No instance for (Num [Int])

The error caught immediately: essentially we are
told that a list of integers is not a number.

All You Need Are Functions – p.16/32

Dynamic vs. Static Typing (2)

Haskell:
> foo () = squares [(2::Int),3,5,7]

No instance for (Num [Int])

The error caught immediately: essentially we are
told that a list of integers is not a number.

Static typing certainly not unique to functional
languages. But some of the most sophisticated
type systems have been developed for functional
languages.

All You Need Are Functions – p.16/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

???

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

20

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

20

Thus, fie(2) = 20. Right?

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

20

Thus, fie(2) = 20. Right?

But what about:
a = 20

fie(2)

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

20

Thus, fie(2) = 20. Right?

But what about:
a = 20

fie(2)

???

All You Need Are Functions – p.17/32

Equational Reasoning (1)

Python:
a = 10

def fie(n):

return a * n

>>> fie(2)

20

Thus, fie(2) = 20. Right?

But what about:
a = 20

fie(2)

40
All You Need Are Functions – p.17/32

Equational Reasoning (2)

Thus, in Python, fie is not a function in the
usual mathematical sense. It is not pure.

All You Need Are Functions – p.18/32

Equational Reasoning (2)

Thus, in Python, fie is not a function in the
usual mathematical sense. It is not pure.

In contrast, Haskell:
> let a = 10

> let fie n = a * n

> let a = 20

> fie 2

20

All You Need Are Functions – p.18/32

Equational Reasoning (2)

Thus, in Python, fie is not a function in the
usual mathematical sense. It is not pure.

In contrast, Haskell:
> let a = 10

> let fie n = a * n

> let a = 20

> fie 2

20

fie 2 = 20 always! We can replace fie 2 by
20 or vice versa anywhere without changing the
meaning of a program. This is what is meant by
equational reasoning.

All You Need Are Functions – p.18/32

Equational Reasoning (3)

Why is it (arguably) a practical advantage to
program with pure functions?

All You Need Are Functions – p.19/32

Equational Reasoning (3)

Why is it (arguably) a practical advantage to
program with pure functions?

A pure function has a simple, well-defined
interface: its meaning is independent of context
and calling it does not cause any side effects.
As a consequence, much easier to:

• Understand large programs

• Reuse code

• Reason about code

All You Need Are Functions – p.19/32

Try Haskell (1)

Point your browser to http://tryhaskell.org.

• A string in Haskell is the same as a list of
characters. I.e.

[’a’, ’b’, ’c’] = "abc"

Try it: type in [’a’, ’b’, ’c’] to verify.

• Try functions head, tail, reverse, sort on your
name. E.g. head "Henrik". What do they do?

• Write an expression that extracts:

- The second letter of your name

- The last letter of your name
All You Need Are Functions – p.20/32

Try Haskell (2)

• What is [1..10]?

• Write an expression for the list of all integers
from 50 to 100.

• Do head, tail, reverse work on lists of numbers?

• What is the type of head, tail, reverse?
Hint: just type in e.g. head and hit return.
What do the types mean?

• What does the function sum do to a list of numbers?

• Write an expression to sum all integers from 1
to 1000.

All You Need Are Functions – p.21/32

Try Haskell (3)

• (*2) is a function that multiplies a number by 2;
(^2) is a function that squares a number. Try!

• map is a higher order function: it takes a
function as an argument and applies it to
every element in a list. Explain the result of:

- map (*2) [1..10]

- map (^2) [1..10]

• Sum the squares from 1 to 1000.

• What does words do to your full name?

• Extract the initials from your full name.

All You Need Are Functions – p.22/32

Infinite Data Structures (1)

Haskell is a lazy functional language: nothing is
evaluated unless needed (and then at most once).

This makes it possible to program with (conceptually)
infinite data structures, such as lists.

All You Need Are Functions – p.23/32

Infinite Data Structures (1)

Haskell is a lazy functional language: nothing is
evaluated unless needed (and then at most once).

This makes it possible to program with (conceptually)
infinite data structures, such as lists.

More generally, laziness promotes declarative
programming. It allows us to focus more on
“what”, less on “how”, as there is less need to
worry about exactly when things get computed:
they get computed automatically as and when
needed.

All You Need Are Functions – p.23/32

Infinite Data Structures (2)

Given:

ones = 1 : ones

from n = n : from (n + 1)

nats = from 0

we have

> take 10 ones

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

> take 10 nats

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
All You Need Are Functions – p.24/32

The Sieve of Eratosthene

The following defines primes to be the list of all
prime numbers!

sieve (p : xs) =

p : sieve [x | x <- xs, x ‘mod‘ p /= 0]

primes = sieve (from 2)

The 10 first and the 10000th prime number:

> take 10 primes

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

> primes !! 9999

104729

All You Need Are Functions – p.25/32

So, What About Real Programs . . .

All You Need Are Functions – p.26/32

So, What About Real Programs . . .

. . . like games?

All You Need Are Functions – p.26/32

So, What About Real Programs . . .

. . . like games?

All You Need Are Functions – p.26/32

Or Musical Applications?

All You Need Are Functions – p.27/32

Take-home Game!

Download for free to your Android device!

Play Store: Pang-a-lambda (Keera Studios)
All You Need Are Functions – p.28/32

But How???

How can we even think about games, musical
applications, etc. as pure functions? What about
interaction?

All You Need Are Functions – p.29/32

But How???

How can we even think about games, musical
applications, etc. as pure functions? What about
interaction?

One possibility: pure functions on signals or
time-varying values:

• Player input

• Video output

• Input from a musical keyboard

• Notes to be played on a synthesizer

• Audio output
All You Need Are Functions – p.29/32

A Bouncing Ball

Lots of bouncing balls in Pang-a-lambda!

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

Mathematical equations that describe a falling
ball: a simple physical model.

All You Need Are Functions – p.30/32

Modelling a Free-falling Ball

type Pos = Double

type Vel = Double

fallingBall :: Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

Some different and extra symbols, but just
superficial syntactic details: the structure
remains the same. We have turned the
mathematical model into a declarative program!

All You Need Are Functions – p.31/32

More information

• http://www.haskell.org

• John Hughes, recent retrospective: Why
Functional Programming Matters
https://www.youtube.com/

watch?v=FGQAP0GxlW8

All You Need Are Functions – p.32/32

	Outline
	The Functional Programming Lab (1)
	The Functional Programming Lab (2)
	The Cost of Software Errors
	(In)famous
Bugs (1)
	(In)famous
Bugs (2)
	Declarative Programming (1)
	Declarative Programming (2)
	List of Squares: Python (1)
	List of Squares: Python (2)
	List of Squares: Haskell
	Other differences: Function Types
	Other differences: Polymorphism
	Dynamic vs. Static Typing (1)
	Dynamic vs. Static Typing (2)
	Equational Reasoning (1)
	Equational Reasoning (2)
	Equational Reasoning (3)
	Try Haskell (1)
	Try Haskell (2)
	Try Haskell (3)
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	The Sieve of Eratosthene
	So, What About �emph {HLColor Real} Programs ldots
	Or Musical Applications?
	Take-home Game!
	But How???
	A Bouncing Ball
	Modelling a Free-falling Ball
	More information

