
1

Physical DB Issues, Indexes,
Query Optimisation

Database Systems Lecture 13
Natasha Alechina

In This Lecture

• Physical DB Issues
• RAID arrays for recovery and speed
• Indexes and query efficiency

• Query optimisation
• Query trees

• For more information
• Connolly and Begg chapter 21 and

appendix C.5

Physical Design

• Design so far
• E/R modelling helps

find the requirements
of a database

• Normalisation helps to
refine a design by
removing data
redundancy

• Physical design
• Concerned with

storing and accessing
the data

• How to deal with
media failures

• How to access
information efficiently

RAID Arrays

• RAID - redundant
array of independent
(inexpensive) disks
• Storing information

across more than one
physical disk

• Speed - can access
more than one disk

• Robustness - if one
disk fails it is OK

• RAID techniques
• Mirroring - multiple

copies of a file are
stored on separate
disks

• Striping - parts of a
file are stored on each
disk

• Different levels (RAID
0, RAID 1…)

RAID Level 0

• Files are split across
several disks
• For a system with n

disks, each file is split
into n parts, one part
stored on each disk

• Improves speed, but
no redundancy

Disk 1 Disk 2 Disk 3

Data

Data1 Data2 Data3

RAID Level 1

• As RAID 0 but with
redundancy
• Files are split over

multiple disks
• Each disk is mirrored
• For n disks, split files

into n/2 parts, each
stored on 2 disks

• Improves speed, has
redundancy, but
needs lots of disks

Disk 1 Disk 2 Disk 3

Data

Data1 Data2

Disk 4

2

Parity Checking

• We can use parity
checking to reduce
the number of disks
• Parity - for a set of

data in binary form
we count the number
of 1s for each bit
across the data

• If this is even the
parity is 0, if odd then
it is 1

1 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 0 1 0 1 0 0 1

0 1 1 0 1 1 1 0

0 1 0 0 0 1 1 1

Recovery With Parity

• If one of our pieces
of data is lost we can
recover it
• Just compute it as the

parity of the
remaining data and
our original parity
information

1 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

0 1 1 0 1 1 1 0

0 1 0 0 0 1 1 1

RAID Level 3

• Data is striped over
disks, and a parity
disk for redundancy
• For n disks, we split

the data in n-1 parts
• Each part is stored on

a disk
• The final disk stores

parity information Disk 1 Disk 2 Disk 3

Data

Data1 Data2

Disk 4

Data3 Parity

Other RAID Issues

• Other RAID levels
consider
• How to split data

between disks
• Whether to store

parity information on
one disk, or spread
across several

• How to deal with
multiple disk failures

• Considerations with
RAID systems
• Cost of disks
• Do you need speed or

redundancy?
• How reliable are the

individual disks?
• ‘Hot swapping’
• Is the disk the weak

point anyway?

Indexes

• Indexes are to do
with ordering data
• The relational model

says that order
doesn’t matter

• From a practical point
of view it is very
important

• Types of indexes
• Primary or clustered

indexes affect the
order that the data is
stored in a file

• Secondary indexes
give a look-up table
into the file

• Only one primary
index, but many
secondary ones

Index Example

• A telephone book
• You store people’s

addresses and phone
numbers

• Usually you have a
name and want the
number

• Sometimes you have
a number and want
the name

• Indexes
• A clustered index can

be made on name
• A secondary index can

be made on number

3

Index Example

Name Number

John 925 1229
Mary 925 8923
Jane 925 8501
Mark 875 1209

As a Table As a File Secondary Index

8751209

9251229

9258501

9258923

Jane, 9258501

John, 9251229

Mark, 8751209

Mary, 9258923

Order does not
really concern us
here

Most of the time we
look up numbers by
name, so we sort the
file by name

Sometimes we
look up names
by number, so
we index number

Choosing Indexes

• You can only have
one primary index
• The most frequently

looked-up value is
often the best choice

• Some DBMSs assume
the primary key is the
primary index, as it is
usually used to refer
to rows

• Don’t create too
many indexes
• They can speed up

queries, but they slow
down inserts, updates
and deletes

• Whenever the data is
changed, the index
may need to change

Index Example

• A product database,
which we want to
search by keyword
• Each product can

have many keywords
• The same keyword

can be associated
with many products

prodID prodName

prodID keyID

keyID keyWord

Products

WordLink

Keywords

Index Example

• To search the products
given a keyWord value
1.We look up the keyWord in

Keywords to find its keyID
2.We look up that keyID in

WordLink to find the related
prodIDs

3.We look up those prodIDs in
Products to find more
information about them

prodID prodName

prodID keyID

keyID keyWord

Creating Indexes

• In SQL we use
CREATE INDEX:

CREATE INDEX

<index name>

ON <table>

(<columns>)

• Example:
CREATE INDEX keyIndex
ON Keywords (keyWord)

CREATE INDEX linkIndex
ON WordLink(keyID)

CREATE INDEX prodIndex
ON Products (prodID)

Query Processing

• Once a database is
designed and made
we can query it
• A query language

(such as SQL) is used
to do this

• The query goes
through several
stages to be executed

• Three main stages
• Parsing and

translation - the query
is put into an internal
form

• Optimisation -
changes are made for
efficiency

• Evaluation - the
optimised query is
applied to the DB

4

Parsing and Translation

• SQL is a good
language for people
• It is quite high level
• It is non-procedural

• Relational algebra is
better for machines
• It can be reasoned

about more easily

• Given an SQL
statement we want
to find an equivalent
relational algebra
expression

• This expression may
be represented as a
tree - the query tree

Relational Operators

• Product 
• Product finds all the

combinations of one
tuple from each of
two relations

• R1  R2 is equivalent
to

SELECT DISTINCT *

FROM R1, R2

• Selection 
• Selection finds all

those rows where
some condition is true

•  cond R is equivalent
to
SELECT DISTINCT *

FROM R

WHERE <cond>

Relational Operators

• Projection 
• Projection chooses a

set of attributes from
a relation, removing
any others

•  A1,A2,… R is
equivalent to
SELECT DISTINCT

A1, A2, ...

FROM R

• Projection, selection
and product are
enough to express
queries of the form
SELECT <cols>

FROM <table>

WHERE <cond>

SQL  Relational Algebra

• SQL statement

SELECT Student.Name
FROM Student,

Enrolment
WHERE

Student.ID =

Enrolment.ID

AND

Enrolment.Code =

‘DBS’

• Relational Algebra
• Take the product of

Student and
Enrolment

• select tuples where
the IDs are the same
and the Code is DBS

• project over
Student.Name

Query Tree

Student Enrolment



 Student.Name

 Student.ID = Enrolment.ID

 Enrolment.Code = ‘DBS’

Optimisation

• There are often
many ways to
express the same
query

• Some of these will
be more efficient
than others

• Need to find a good
version

• Many ways to
optimise queries
• Changing the query

tree to an equivalent
but more efficient one

• Choosing efficient
implementations of
each operator

• Exploiting database
statistics

5

Optimisation Example

• In our query tree
before we have the
steps
• Take the product of

Student and
Enrolment

• Then select those
entries where the
Enrolment.Code
equals ‘DBS’

• This is equivalent to
• selecting those

Enrolment entries
with Code = ‘DBS’

• Then taking the
product of the result
of the selection
operator with Student

Optimised Query Tree

Student

Enrolment



 Student.Name

 Student.ID = Enrolment.ID

 Enrolment.Code = ‘DBS’

Optimisation Example

• To see the benefit of
this, consider the
following statistics
• Nottingham has

around 18,000 full
time students

• Each student is
enrolled in at about
10 modules

• Only 200 take DBS

• From these statistics
we can compute the
sizes of the relations
produced by each
operator in our
query trees

Original Query Tree

Student Enrolment



 Student.Name

 Student.ID = Enrolment.ID

 Enrolment.Code = ‘DBS’

180,000

3,240,000,000

3,600,000

200

200

18,000

Optimised Query Tree

Student

Enrolment



Student.Name

 Student.ID = Enrolment.ID

 Enrolment.Code = ‘DBS’

180,000

18,000
200

3,600,000

200

200

Optimisation Example

• The original query
tree produces an
intermediate result
with 3,240,000,000
entries

• The optimised
version at worst has
3,600,000

• A big improvement!

• There is much more
to optimisation
• In the example, the

product and the
second selection can
be combined and
implemented
efficiently to avoid
generating all
Student-Enrolment
combinations

6

Optimisation Example

• If we have an index
on Student.ID we
can find a student
from their ID with a
binary search

• For 18,000 students,
this will take at most
15 operations

• For each Enrolment
entry with Code
‘DBS’ we find the
corresponding
Student from the ID

• 200 x 15 = 3,000
operations to do
both the product and
the selection.

Next Lecture

• Database Security
• Aspects of security
• Access to databases
• Privileges and views

• Database Integrity
• View updating, Integrity constraints

• For more information
• Connolly and Begg chapters 6 and 19

