Physical DB Issues, Indexes, Query Optimisation

Database Systems Lecture 13 Natasha Alechina

In This Lecture

- Physical DB Issues
 - RAID arrays for recovery and speed
 - Indexes and query efficiency
- Query optimisation
 Query trees
- For more information
 - Connolly and Begg chapter 21 and appendix C.5

Parity Che	ecł	۲i	n	g				
 We can use parity checking to reduce 								
the number of disks	1	0	1	1	0	0	1	1
 Parity - for a set of data in binary form 	0	0	1	1	0	0	1	1
we count the number	1	0	1	0	1	0	0	1
of 1s for each bit across the data	0	1	1	0	1	1	1	0
 If this is even the parity is 0, if odd then it is 1 	0	1	0	0	0	1	1	1

Parsing and Translation

- SQL is a good language for people
 - It is quite high level
 - It is non-procedural
- Relational algebra is better for machines
- It can be reasoned about more easily
- Given an SQL statement we want to find an equivalent relational algebra expression
- This expression may be represented as a tree - the guery tree

- Product ×
 Product finds all the combinations of one tuple from each of two relations
 R1 × R2 is equivalent
 - to SELECT DISTINCT *
 - FROM R1, R2
- Selection σ
 Selection finds all those rows where some condition is true
- $\sigma_{\text{ cond}}$ R is equivalent to
- SELECT DISTINCT * FROM R WHERE <cond>

Relational Operators Projection π • Projection, selection Projection chooses a and product are set of attributes from enough to express a relation, removing queries of the form any others SELECT <cols> • π_{A1.A2} R is FROM equivalent to WHERE <cond> SELECT DISTINCT A1, A2, ... FROM R

$\mathsf{SQL} \to \mathsf{Relational} \ \mathsf{Algebra}$

- SQL statement
 - SELECT Student.Name FROM Student,

Enrolment WHERE

- Student.ID =
 Enrolment.ID
- AND
- Enrolment.Code =
- Relational Algebra
 Take the product of Student and Enrolment
 - select tuples where the IDs are the same and the Code is DBS
 - project over Student.Name

Optimisation Example

- In our query tree before we have the steps
 - Take the product of Student and Enrolment
 - Then select those entries where the Enrolment.Code equals 'DBS'
- This is equivalent to
 selecting those
 - Enrolment entries with Code = 'DBS'
 Then taking the product of the result
 - of the selection operator with Student

Optimisation Example

- If we have an index on Student.ID we can find a student from their ID with a binary search
- For 18,000 students, this will take at most 15 operations
- For each Enrolment entry with Code 'DBS' we find the corresponding Student from the ID
- 200 x 15 = 3,000 operations to do *both* the product and the selection.

Next Lecture

- Database Security
 - Aspects of security
 - Access to databases
 - Privileges and views
- Database Integrity
 View updating, Integrity constraints
- For more information
 - Connolly and Begg chapters 6 and 19