
1

Transactions and Recovery

Database Systems Lecture 15
Natasha Alechina

Transactions and Recovery

In This Lecture

• Transactions
• Recovery

• System and Media Failures

• Concurrency
• Concurrency problems

• For more information
• Connolly and Begg chapter 20
• Ullman and Widom 8.6

Transactions and Recovery

Transactions

• A transaction is an action, or a series of
actions, carried out by a single user or an
application program, which reads or updates
the contents of a database.

Transactions and Recovery

Transactions

• A transaction is a
‘logical unit of work’
on a database
• Each transaction does

something in the
database

• No part of it alone
achieves anything of
use or interest

• Transactions are the
unit of recovery,
consistency, and
integrity as well

• ACID properties
• Atomicity
• Consistency
• Isolation
• Durability

Transactions and Recovery

Atomicity and Consistency

• Atomicity
• Transactions are

atomic – they don’t
have parts
(conceptually)

• can’t be executed
partially; it should not
be detectable that
they interleave with
another transaction

• Consistency
• Transactions take the

database from one
consistent state into
another

• In the middle of a
transaction the
database might not
be consistent

Transactions and Recovery

Isolation and Durability

• Isolation
• The effects of a

transaction are not
visible to other
transactions until it
has completed

• From outside the
transaction has either
happened or not

• To me this actually
sounds like a
consequence of
atomicity…

• Durability
• Once a transaction

has completed, its
changes are made
permanent

• Even if the system
crashes, the effects of
a transaction must
remain in place

2

Transactions and Recovery

Example of transaction

• Transfer £50 from
account A to account B
Read(A)
A = A - 50
Write(A)
Read(B)
B = B+50
Write(B)

Atomicity - shouldn’t take
money from A without
giving it to B

Consistency - money isn’t
lost or gained

Isolation - other queries
shouldn’t see A or B
change until completion

Durability - the money
does not go back to A

transaction

Transactions and Recovery

The Transaction Manager

• The transaction
manager enforces
the ACID properties
• It schedules the

operations of
transactions

• COMMIT and
ROLLBACK are used
to ensure atomicity

• Locks or timestamps
are used to ensure
consistency and
isolation for
concurrent
transactions (next
lectures)

• A log is kept to ensure
durability in the event
of system failure (this
lecture)

Transactions and Recovery

COMMIT and ROLLBACK

• COMMIT signals the
successful end of a
transaction
• Any changes made by

the transaction should
be saved

• These changes are
now visible to other
transactions

• ROLLBACK signals
the unsuccessful end
of a transaction
• Any changes made by

the transaction should
be undone

• It is now as if the
transaction never
existed

Transactions and Recovery

Recovery

• Transactions should
be durable, but we
cannot prevent all
sorts of failures:
• System crashes
• Power failures
• Disk crashes
• User mistakes
• Sabotage
• Natural disasters

• Prevention is better
than cure
• Reliable OS
• Security
• UPS and surge

protectors
• RAID arrays

• Can’t protect against
everything though

Transactions and Recovery

The Transaction Log

• The transaction log
records the details of
all transactions
• Any changes the

transaction makes to
the database

• How to undo these
changes

• When transactions
complete and how

• The log is stored on
disk, not in memory
• If the system crashes

it is preserved

• Write ahead log rule
• The entry in the log

must be made before
COMMIT processing
can complete

Transactions and Recovery

System Failures

• A system failure
means all running
transactions are
affected
• Software crashes
• Power failures

• The physical media
(disks) are not
damaged

• At various times a
DBMS takes a
checkpoint
• All committed

transactions are
written to disk

• A record is made (on
disk) of the
transactions that are
currently running

3

Transactions and Recovery

Types of Transactions

Last Checkpoint System Failure

T1

T2

T3

T4

T5

Transactions and Recovery

System Recovery

• Any transaction that
was running at the
time of failure needs
to be undone and
restarted

• Any transactions
that committed since
the last checkpoint
need to be redone

• Transactions of type
T1 need no recovery

• Transactions of type
T3 or T5 need to be
undone and
restarted

• Transactions of type
T2 or T4 need to be
redone

Transactions and Recovery

Transaction Recovery

UNDO and REDO: lists of transactions

UNDO = all transactions running at the last checkpoint
REDO = empty

For each entry in the log, starting at the last checkpoint
If a BEGIN TRANSACTION entry is found for T

Add T to UNDO
If a COMMIT entry is found for T

Move T from UNDO to REDO

Transactions and Recovery

Transaction Recovery
T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3

REDO:
Last Checkpoint

Active transactions: T2, T3

Transactions and Recovery

Transaction Recovery
T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3, T4

REDO:
T4 Begins

Add T4 to UNDO

Transactions and Recovery

Transaction Recovery
T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3, T4, T5

REDO:
T5 begins

Add T5 to UNDO

4

Transactions and Recovery

Transaction Recovery
T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T3, T4, T5

REDO: T2

T2 Commits

Move T2 to REDO

Transactions and Recovery

Transaction Recovery
T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T3, T5

REDO: T2, T4

T4 Commits

Move T4 to REDO

Transactions and Recovery

Forwards and Backwards

• Backwards recovery
• We need to undo

some transactions
• Working backwards

through the log we
undo any operation by
a transaction on the
UNDO list

• This returns the
database to a
consistent state

• Forwards recovery
• Some transactions

need to be redone
• Working forwards

through the log we
redo any operation by
a transaction on the
REDO list

• This brings the
database up to date

Transactions and Recovery

Media Failures

• System failures are
not too severe
• Only information since

the last checkpoint is
affected

• This can be recovered
from the transaction
log

• Media failures (disk
crashes etc) are
more serious
• The data stored to

disk is damaged
• The transaction log

itself may be
damaged

Transactions and Recovery

Backups

• Backups are needed
to recover from
media failure
• The transaction log

and entire contents of
the database is
written to secondary
storage (often tape)

• Time consuming, and
often requires down
time

• Backups frequency
• Frequent enough that

little information is
lost

• Not so frequent as to
cause problems

• Every day (night) is
common

• Backup storage

Transactions and Recovery

Recovery from Media Failure

• Restore the database
from the last backup

• Use the transaction
log to redo any
changes made since
the last backup

• If the transaction log
is damaged you can’t
do step 2
• Store the log on a

separate physical
device to the
database

• The risk of losing both
is then reduced

5

Transactions and Recovery

Concurrency

• Large databases are
used by many people
• Many transactions to be

run on the database
• It is desirable to let

them run at the same
time as each other

• Need to preserve
isolation

• If we don’t allow for
concurrency then
transactions are run
sequentially
• Have a queue of

transactions
• Long transactions (eg

backups) will make
others wait for long
periods

Transactions and Recovery

Concurrency Problems

• In order to run
transactions
concurrently we
interleave their
operations

• Each transaction
gets a share of the
computing time

• This leads to several
sorts of problems
• Lost updates
• Uncommitted updates
• Incorrect analysis

• All arise because
isolation is broken

Transactions and Recovery

Lost Update

• T1 and T2 read X,
both modify it, then
both write it out
• The net effect of T1

and T2 should be no
change on X

• Only T2’s change is
seen, however, so the
final value of X has
increased by 5

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

Transactions and Recovery

Uncommitted Update

• T2 sees the change
to X made by T1, but
T1 is rolled back
• The change made by

T1 is undone on
rollback

• It should be as if that
change never
happened

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
X = X + 5
Write(X)

ROLLBACK
COMMIT

Transactions and Recovery

Inconsistent analysis

• T1 doesn’t change
the sum of X and Y,
but T2 sees a change
• T1 consists of two

parts – take 5 from X
and then add 5 to Y

• T2 sees the effect of
the first, but not the
second

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
Read(Y)
Sum = X+Y

Read(Y)
Y = Y + 5
Write(Y)

Transactions and Recovery

Next Lecture

• Concurrency
• Locks and resources
• Deadlock

• Serialisability
• Schedules of transactions
• Serial & serialisable schedules

• For more information
• Connolly and Begg chapter 20
• Ullman and Widom 8.6

