
Concurrency

Database Systems Lecture 16
Natasha Alechina

In This Lecture

• Concurrency control
• Serialisability

• Schedules of transactions
• Serial & serialisable schedules

• Locks
• 2 Phase Locking protocol (2PL)
• For more information

• Connolly and Begg chapter 20
• Ullman and Widom chapter 8.6

Need for concurrency control

• Previous lecture: transactions running
concurrently may interfere with each other,
causing various problems (lost updates etc.)

• Concurrency control: the process of
managing simultaneous operations on the
database without having them interfere with
each other.

Lost Update

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

This update
Is lost Only this update

succeeds

Uncommitted Update
(“dirty read”)

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
X = X + 5
Write(X)

ROLLBACK
COMMIT

This reads
the value
of X which
it should
not have
seen

Inconsistent analysis

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
Read(Y)
Sum = X+Y

Read(Y)
Y = Y + 5
Write(Y)

Summing up
data while it is
being updated

Schedules

• A schedule is a sequence of the operations
by a set of concurrent transactions that
preserves the order of operations in each of
the individual transactions

• A serial schedule is a schedule where
operations of each transaction are executed
consecutively without any interleaved
operations from other transactions (each
transaction commits before the next one is
allowed to begin)

Serial schedules

• Serial schedules are guaranteed to avoid
interference and keep the database
consistent

• However databases need concurrent access
which means interleaving operations from
different transactions

Serialisability

• Two schedules are equivalent if they always
have the same effect.

• A schedule is serialisable if it is equivalent
to some serial schedule.

• For example:
• if two transactions only read some data items,

then the order is which they do it is not important
• If T1 reads and updates X and T2 reads and

updates a different data item Y, then again they
can be scheduled in any order.

Serial and Serialisable

Serial Schedule
T2 Read(X)
T2 Read(Y)
T2 Read(Z)

T1 Read(X)
T1 Read(Z)
T1 Read(Y)

Interleaved Schedule
T1 Read(X)
T2 Read(X)
T2 Read(Y)
T1 Read(Z)
T1 Read(Y)
T2 Read(Z)

This schedule is serialisable:

Conflict Serialisable Schedule

Serial Schedule
T1 Read(X)
T1 Write(X)
T1 Read(Y)
T1 Write(Y)

T2 Read(X)
T2 Write(X)
T2 Read(Y)
T2 Write(Y)

Interleaved Schedule
T1 Read(X)
T1 Write(X)
T2 Read(X)
T2 Write(X)
T1 Read(Y)
T1 Write(Y)
T2 Read(Y)
T2 Write(Y)

This schedule is serialisable,
even though T1 and T2 read
and write the same resources
X and Y: they have a conflict

Conflict Serialisability

• Two transactions
have a conflict:
• NO If they refer to

different resources
• NO If they are reads
• YES If at least one is

a write and they use
the same resource

• A schedule is conflict
serialisable if
transactions in the
schedule have a
conflict but the
schedule is still
serialisable

Conflict Serialisability

• Conflict serialisable
schedules are the
main focus of
concurrency control

• They allow for
interleaving and at
the same time they
are guaranteed to
behave as a serial
schedule

• Important questions:
how to determine
whether a schedule
is conflict serialisable

• How to construct
conflict serialisable
schedules

Precedence Graphs

• To determine if a
schedule is conflict
serialisable we use a
precedence graph
• Transactions are

vertices of the graph
• There is an edge from

T1 to T2 if T1 must
happen before T2 in
any equivalent serial
schedule

• Edge T1  T2 if in the
schedule we have:
• T1 Read(R) followed by

T2 Write(R) for the
same resource R

• T1 Write(R) followed by
T2 Read(R)

• T1 Write(R) followed by
T2 Write(R)

• The schedule is
serialisable if there are
no cycles

Precedence Graph Example

• The lost update
schedule has the
precedence graph:

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

T1 T2

T1 Write(X) followed by T2 Write(X)

T2 Read(X) followed by T1 Write(X)

Precedence Graph Example

• No cycles: conflict
serialisable schedule

T1 T2

Read(X)
Write(X)

Read(X)
Write(X)

T1 T2

T1 reads X before T2 writes X and
T1 writes X before T2 reads X and

T1 writes X before T2 writes X

Locking

• Locking is a procedure used to control
concurrent access to data (to ensure
serialisability of concurrent transactions)

• In order to use a ‘resource’ (table, row, etc)
a transaction must first acquire a lock on
that resource

• This may deny access to other transactions
to prevent incorrect results

Two types of locks

• Two types of lock
• Shared lock (S-lock or read-lock)
• Exclusive lock (X-lock or write-lock)

• Read lock allows several transactions
simultaneously to read a resource (but no
transactions can change it at the same time)

• Write lock allows one transaction exclusive
access to write to a resource. No other
transaction can read this resource at the same
time.

• The lock manager in the DBMS assigns locks and
records them in the data dictionary

Locking

• Before reading from a
resource a transaction
must acquire a read-lock

• Before writing to a
resource a transaction
must acquire a write-lock

• Locks are released on
commit/rollback

• A transaction may not
acquire a lock on any
resource that is write-
locked by another
transaction

• A transaction may not
acquire a write-lock on a
resource that is locked
by another transaction

• If the requested lock is
not available, transaction
waits

Two-Phase Locking

• A transaction follows
the two-phase
locking protocol
(2PL) if all locking
operations precede
the first unlock
operation in the
transaction

• Two phases
• Growing phase where

locks are acquired on
resources

• Shrinking phase
where locks are
released

Example

• T1 follows 2PL
protocol
• All of its locks are

acquired before it
releases any of them

• T2 does not
• It releases its lock on

X and then goes on to
later acquire a lock on
Y

T1 T2
read-lock(X) read-lock(X)
Read(X) Read(X)
write-lock(Y) unlock(X)
unlock(X) write-lock(Y)
Read(Y) Read(Y)
Y = Y + X Y = Y + X
Write(Y) Write(Y)
unlock(Y) unlock(Y)

Serialisability Theorem

Any schedule of two-phased
transactions is conflict serialisable

Lost Update can’t happen with
2PL

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

read-lock(X)

cannot acquire
write-lock(X):
T2 has read-
lock(X)

read-lock(X)

cannot acquire
write-lock(X):
T1 has
read-lock(X)

Uncommitted Update cannot
happen with 2PL

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
X = X + 5
Write(X)

ROLLBACK
COMMIT

read-lock(X)

write-lock(X) Waits till T1
releases
write-lock(X)

Locks released

Inconsistent analysis cannot
happen with 2PL

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
Read(Y)
Sum = X+Y

Read(Y)
Y = Y + 5
Write(Y)

read-lock(X)

write-lock(X)

read-lock(Y)

write-lock(Y)

Waits till T1
releases
write-locks on
X and Y

Next Lecture

• Deadlocks
• Deadlock detection
• Deadlock prevention

• Timestamping
• For more information

• Connolly and Begg chapter 20
• Ullman and Widom chapter 8.6

