
Exam revision

Database Systems Lecture 18
Natasha Alechina

Exam revision

In This Lecture

• Exam format
• Main topics
• How to revise

Exam revision

Exam format

• Answer three questions out of five
• Each question is worth 25 points
• I will only mark three questions in the

order you answer them
• (So cross out any answers you don’t

want marked)
• Final mark for the module is your

coursework mark (at most 25) plus
your exam mark (at most 75).

Exam revision

Main topics

• What is a database, what is a DBMS, data manipulation
language, data definition language, data control
language

• Relational model
• Relations, attributes, domains
• candidate keys, primary keys, foreign keys, entity

integrity, referential integrity)
• Relational algebra
• SQL (the kind of questions you did in cw2, cw3, cw4)
• Normalisation (1NF, 2NF, 3NF, BCNF)
• Security, privileges (how to grant and revoke them)
• Transactions, recovery
• Concurrency

Exam revision

How to revise

• Do all the exercises, then check the model solutions

• Remember SQL syntax – you will have to write SQL
queries in the exam

• Look at the previous exam papers (for G51DBS06-07,
G51DBS07-08, G51DBS08-09 and G52DBS)

• Exam for last year and answers are now on the web

• If you get stuck with some previous exam paper
questions, send me an email – I will either answer by
email or, if I get a lot of similar questions, arrange a
tutorial

Exam revision

Particular topics

• Normalisation
• Relational Algebra
• Concurrency control: 2PL and Timestamping

Exam revision

Normalisation

• General idea: given a relation R
• Find all candidate keys in R
• Find all non-trivial functional dependencies

in R
• Decomposing to XNF: for every functional

dependency A B which is “bad” with
respect to XNF, decompose R into AB (R)
and AC (R) where C is the rest of R’s
attributes.

Exam revision

Candidate keys

• A set of attributes A (can be a singleton set) is a
candidate key for relation R if it has properties of
• Uniqueness: no two different tuples in R can have

the same values for attributes in A
• Minimality: no subset of A has the uniqueness

property
• A set of attributes is a superkey if it includes a

candidate key
• We call an single attribute a key attribute if it is part of

a candidate key.

Exam revision

Example (coursework 5)

• (Cinema,Film,Day,Time) is a candidate key:
• It uniquely identifies each tuple: there are no two tuples

which agree on these four attributes and have different
values for other attributes (in this case, there is only one
other attribute Certificate).

• It is minimal (removing one of the attributes with make
the resulting set not unique).

• (Cinema, Film, Day, Time) and (Cinema, Film, Day,
Time, Certificate) are superkeys.

• Cinema is a key attribute. Certificate is a non-key
attribute.

Exam revision

Functional dependencies

• A, B are sets of attributes of relation R.
• A functional dependency A B holds for R if for every

two tuples in R, if they have the same values for A, then
they have the same values for B.

• Non-trivial functional dependency: A B is non-trivial
if B is not a subset of A.

Exam revision

Example (coursework 5)

• {Film} {Certificate} is a non-trivial functional
dependency

• {Cinema, Film} {Certificate} is also a non-trivial
functional dependency

• So is {Film} X {Certificate} for any X
{Cinema,Day,Time}

• {Film, Certificate} {Certificate} is a trivial functional
dependency

Exam revision

“Bad” functional dependencies

• For 2NF: A B where A is a part of a candidate key
and B is a non-key attribute (so, a table is in 2NF if it
has no such dependencies)

• For 3NF: A B, B C where C is a not a key attribute
(alternative definition of 3NF: bad fd A B is where A is

not a superkey and B is non-key attribute)
• For BCNF: non-trivial A B where A is not a superkey.
• Example of 3NF but not BCNF: R(A,B,C), candidate keys

(A,B) and (A,C), fd B C.

Exam revision

Example (coursework 5)

• Relation Listing is not in 2NF because it has a functional
dependency {Film} {Certificate} where Film is part
of a candidate key and Certificate is a non-key attribute.

Exam revision

Revision of relational algebra

• Operations: (union), (difference),
(product), (projection), (selection)

• Other operations are definable using
the ones above: (intersection), ⋈
(natural join – can be defined using ,
and)

Exam revision

Revision of relational algebra

• Union-compatible relations: same
number of attributes/columns, with the
same domains

• For named relations (as SQL tables,
where columns have names), also the
names of the attributes/columns should
be the same

Exam revision

Example: not union-compatible

Name

Bob

Chris

email

bbb

ccc

Name

Sam

Steve

DOB

1985

1986

telephone

222222

333333

Exam revision

Example: not union-compatible

(different domains for the second column)

Name

Bob

Chris

Email (domain:
char(3))

bbb

ccc

Name

Sam

Steve

DOB
(domain: int)

1985

1986

Exam revision

Example: union-compatible

Name

Bob

Chris

DOB

1971

1972

Name

Sam

Steve

DOB

1985

1986

Exam revision

Union of two relations

• Let R and S be two union-compatible
relations. Then their union R S is a
relation which contains tuples from both
relations:

R S = {x: x R or x S}.

Exam revision

Example: shopping lists

R S R S

Name Price
Milk 0.80
Bread 0.60
Eggs 1.20

Cream 5.00
Name Price Name Price

Milk 0.80
Bread 0.60
Eggs 1.20
Soap 1.00
Cream 5.00

Soap 1.00

Exam revision

Difference of two relations

Let R and S be two union-compatible
relations. Then their difference R S is
a relation which contains tuples which
are in R but not in S:

R S = {x: x R and x S}.

Exam revision

Example

R S R S

Name Price
Milk 0.80
Bread 0.60
Eggs 1.20

Soap 1.00
Name Price Name Price

Milk 0.80
Bread 0.60
Eggs 1.20

Soap 1.00

Exam revision

(Extended Cartesian)
product of relations

A relation containing all tuples of the
form:

<tuple from R, tuple from S>:
R S = {<c1,…,cn, cn+1,…,cn+m>:
<c1, …,cn> R, <cn+1,…,cn+m > S}
(this assumes R has n columns and S has

m columns)

Exam revision

Example

Name Price
Milk 0.80
Bread 0.60
Eggs 1.20

Milk 200
Name Calories Name Price

Milk 0.80
Bread 0.60
Eggs 1.20

Soap 1.00

Name Cal
Milk 200
Milk 200
Milk 200

Cheese 1.34 Bread 300
Milk 0.80 Bread 300
Bread 0.60 Bread 300
Eggs 1.20 Bread 300
Soap 1.00 Bread 300

Soap 1.00 Milk 200

R S RS

Bread 300

Exam revision

Projection

• Let R be a relation with n columns, and
X is a set of column names. Then
projection of R on X is a new relation
X(R) which only has columns from X.

Exam revision

Example: Name,Telephone (R)

R:

Name Email

Bob bbb@cs.nott.ac.uk

Chris ccc@cs.nott.ac.uk

Telephone

0115222222

0115333333

Exam revision

Example: Name,Telephone (R)

Name,Telephone (R):

Name

Bob

Chris

Telephone

0115222222

0115333333

Exam revision

Selection

• Let R be a relation and is a property
of tuples from R.

• Selection from R subject to condition
is defined as follows:

 (R) = {<a1 ,…,an> R: (a1 ,…,an)}

Exam revision

Example: selection

• Year < 2002 and Director = Nolan (R)

Insomnia Nolan 2002
Magnolia
Insomnia

Anderson 1999
Skjoldbjaerg 1997

Memento Nolan 2000
Gattaca Niccol 1997

R
Title Director Year

Exam revision

Example: selection

• Year < 2002 and Director = Nolan (R)

Memento Nolan 2000

Title Director Year

Exam revision

Example (small) exam question

• What is the result of
R.Name,S. Name(R.Tel = S.Tel (R S)), where R

and S are:

Anne

Bob

111111

222222

R

Chris

Dan

333333

111111

S

Name Tel Name Tel

Exam revision

Example exam question

R S

Anne

Bob

111111

222222

Chris
Dan

333333
111111

R.Name R.Tel S.Name S.Tel

Anne 111111
Chris 333333
Dan 111111Bob 222222

Exam revision

Example exam question

 R.Tel = S.Tel (R S)

Dan 111111

R.Name R.Tel S.Name S.Tel

Anne 111111

Exam revision

Example exam question

R.Name,S.Name(R.Tel = S.Tel (R S))

Dan

R.Name S.Name

Anne

Exam revision

Revision of concurrency

• Transactions running concurrently may
interfere with each other, causing various
problems (lost updates etc.)

• Concurrency control: the process of
managing simultaneous operations on the
database without having them interfere with
each other.

Exam revision

Lost Update

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

This update
Is lost Only this update

succeeds

Exam revision

Uncommitted Update
(“dirty read”)

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
X = X + 5
Write(X)

ROLLBACK
COMMIT

This reads
the value
of X which
it should
not have
seen

Exam revision

Inconsistent analysis

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
Read(Y)
Sum = X+Y

Read(Y)
Y = Y + 5
Write(Y)

Summing up
data while it is
being updated

Exam revision

Schedules

• A schedule is a sequence of the operations
by a set of concurrent transactions that
preserves the order of operations in each of
the individual transactions

• A serial schedule is a schedule where
operations of each transaction are executed
consecutively without any interleaved
operations from other transactions (each
transaction commits before the next one is
allowed to begin)

Exam revision

Serial schedules

• Serial schedules are guaranteed to avoid
interference and keep the database
consistent

• However databases need concurrent access
which means interleaving operations from
different transactions

Exam revision

Serialisability

• Two schedules are equivalent if they always
have the same effect.

• A schedule is serialisable if it is equivalent
to some serial schedule.

• For example:
• if two transactions only read some data items,

then the order is which they do it is not important
• If T1 reads and updates X and T2 reads and

updates a different data item Y, then again they
can be scheduled in any order.

Exam revision

Serial and Serialisable

Serial Schedule
T2 Read(X)
T2 Read(Y)
T2 Read(Z)

T1 Read(X)
T1 Read(Z)
T1 Read(Y)

Interleaved Schedule
T1 Read(X)
T2 Read(X)
T2 Read(Y)
T1 Read(Z)
T1 Read(Y)
T2 Read(Z)

This schedule is serialisable:

Exam revision

Conflict Serialisable Schedule

Serial Schedule
T1 Read(X)
T1 Write(X)
T1 Read(Y)
T1 Write(Y)

T2 Read(X)
T2 Write(X)
T2 Read(Y)
T2 Write(Y)

Interleaved Schedule
T1 Read(X)
T1 Write(X)
T2 Read(X)
T2 Write(X)
T1 Read(Y)
T1 Write(Y)
T2 Read(Y)
T2 Write(Y)

This schedule is serialisable,
even though T1 and T2 read
and write the same resources
X and Y: they have a conflict

Exam revision

Conflict Serialisability

• Two transactions
have a conflict:
• NO If they refer to

different resources
• NO If they are reads
• YES If at least one is

a write and they use
the same resource

• A schedule is conflict
serialisable if
transactions in the
schedule have a
conflict but the
schedule is still
serialisable

Exam revision

Concurrency control

• Our aim is to constrain concurrent
transactions so that all resulting schedules
are conflict serialisable

• Two approaches:
• Locks
• Time stamps

Exam revision

Locking

• Locking is a procedure used to control
concurrent access to data (to ensure
serialisability of concurrent transactions)

• In order to use a ‘resource’ (table, row, etc)
a transaction must first acquire a lock on
that resource

• This may deny access to other transactions
to prevent incorrect results

Exam revision

Two types of locks

• Two types of lock
• Shared lock (S-lock or read-lock)
• Exclusive lock (X-lock or write-lock)

• Read lock allows several transactions
simultaneously to read a resource (but no
transactions can change it at the same time)

• Write lock allows one transaction exclusive
access to write to a resource. No other
transaction can read this resource at the same
time.

• The lock manager in the DBMS assigns locks and
records them in the data dictionary

Exam revision

Locking

• Before reading from a
resource a transaction
must acquire a read-lock

• Before writing to a
resource a transaction
must acquire a write-lock

• Locks are released on
commit/rollback

• A transaction may not
acquire a lock on any
resource that is write-
locked by another
transaction

• A transaction may not
acquire a write-lock on a
resource that is locked
by another transaction

• If the requested lock is
not available, transaction
waits

Exam revision

Two-Phase Locking

• A transaction follows
the two-phase
locking protocol
(2PL) if all locking
operations precede
the first unlock
operation in the
transaction

• Two phases
• Growing phase where

locks are acquired on
resources

• Shrinking phase
where locks are
released

Exam revision

Example

• T1 follows 2PL
protocol
• All of its locks are

acquired before it
releases any of them

• T2 does not
• It releases its lock on

X and then goes on to
later acquire a lock on
Y

T1 T2
read-lock(X) read-lock(X)
Read(X) Read(X)
write-lock(Y) unlock(X)
unlock(X) write-lock(Y)
Read(Y) Read(Y)
Y = Y + X Y = Y + X
Write(Y) Write(Y)
unlock(Y) unlock(Y)

Exam revision

Serialisability Theorem

Any schedule of two-phased
transactions is conflict serialisable

Exam revision

Lost Update can’t happen with
2PL

T1 T2

Read(X)
X = X - 5

Read(X)
X = X + 5

Write(X)
Write(X)

COMMIT
COMMIT

read-lock(X)

cannot acquire
write-lock(X):
T2 has read-
lock(X)

read-lock(X)

cannot acquire
write-lock(X):
T1 has
read-lock(X)

Exam revision

Uncommitted Update cannot
happen with 2PL

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
X = X + 5
Write(X)

ROLLBACK
COMMIT

read-lock(X)

write-lock(X) Waits till T1
releases
write-lock(X)

Locks released

Exam revision

Inconsistent analysis cannot
happen with 2PL

T1 T2

Read(X)
X = X - 5
Write(X)

Read(X)
Read(Y)
Sum = X+Y

Read(Y)
Y = Y + 5
Write(Y)

read-lock(X)

write-lock(X)

read-lock(Y)

write-lock(Y)

Waits till T1
releases
write-locks on
X and Y

Exam revision

Timestamping

• Transactions can be
run concurrently
using a variety of
techniques

• We looked at using
locks to prevent
interference

• An alternative is
timestamping
• Requires less

overhead in terms of
tracking locks or
detecting deadlock

• Determines the order
of transactions before
they are executed

Exam revision

Timestamping

• Each transaction has
a timestamp, TS,
and if T1 starts
before T2 then
TS(T1) < TS(T2)
• Can use the system

clock or an
incrementing counter
to generate
timestamps

• Each resource has
two timestamps
• R(X), the largest

timestamp of any
transaction that has
read X

• W(X), the largest
timestamp of any
transaction that has
written X

Exam revision

Timestamp Protocol

• If T tries to read X
• If TS(T) < W(X) T is

rolled back and
restarted with a later
timestamp

• If TS(T) W(X) then
the read succeeds and
we set R(X) to be
max(R(X), TS(T))

• T tries to write X
• If TS(T) < W(X) or

TS(T) < R(X) then T
is rolled back and
restarted with a later
timestamp

• Otherwise the write
succeeds and we set
W(X) to TS(T)

Exam revision

Timestamping Example

• Given T1 and T2 we
will assume
• The transactions

make alternate
operations

• Timestamps are
allocated from a
counter starting at 1

• T1 goes first

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

YX

R

W

Z

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

1

YX

R

W

Z

1

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 1

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

2 2

2

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

3 2

2

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

3 3

23

YX

R

W

Z

3 2

T2T1

TS

Exam revision

Timestamping

• The protocol means
that transactions
with higher times
take precedence
• Equivalent to running

transactions in order
of their final time
values

• Transactions don’t
wait - no deadlock

• Problems
• Long transactions

might keep getting
restarted by new
transactions -
starvation

• Rolls back old
transactions, which
may have done a lot
of work

Exam revision

Any questions?

