Introduction to Database Systems

Database Systems Lecture 1
Natasha Alechina
www.cs.nott.ac.uk/~nza/G51DBS

In this Lecture
• Course Information
• Databases and Database Systems
• Some History
• The Relational Model
For more information
• Connolly and Begg – Chapters 1 and 2
• The module website
www.cs.nott.ac.uk/~nza/G51DBS/

Course Information
• Contact details
 • Natasha Alechina
 • nza@cs.nott.ac.uk
 • Office: B50
• Lectures
 • Mondays at 9 (sorry, not my fault) in LT3
 • Wednesdays at 12 in LT2
 • Labs Wednesday 9-11
• Assessment
 • 25% Coursework
 • Some lab-marked exercises
 • A written exercise with a database design
 • 75% Examination
 • 2 hour written exam
 • Answer 3 out of 5 questions
 • Format similar to past years’ papers

Textbook
• Recommended text:
 • ‘Database Systems: A practical approach to design, implementation and management’ by Connolly and Begg
 • This text
 • Covers most of the module
 • Is fairly accessible but still detailed
• Other texts:
 • There are lots of database texts
 • Most of them would be fine also
 • For example:
 • ‘Database Systems’ by C.J Date
 • I like Ullman and Widom, ‘A first course in database systems’

Course Overview
• Several main topics
 • Database systems
 • Data models
 • Database design
 • SQL
 • Transactions
 • Concurrency
 • Administration
• Practical sessions
 • Will start on 21 February
 • SQL
 • creating a database
 • querying a database

Why Study Databases?
• Databases are useful
 • Many computing applications deal with large amounts of information
 • Database systems give a set of tools for storing, searching and managing this information
• Databases in CS
 • Databases are a ‘core topic’ in computer science
 • Basic concepts and skills with database systems are part of the skill set you will be assumed to have as a CS graduate
What is a Database?

• “A set of information held in a computer”
 Oxford English Dictionary
• “One or more large structured sets of persistent data, usually associated with software to update and query the data”
 Free On-Line Dictionary of Computing
• “A collection of data arranged for ease and speed of search and retrieval”
 Dictionary.com

Databases

• Web indexes
• Library catalogues
• Medical records
• Bank accounts
• Stock control
• Personnel systems
• Product catalogues
• Telephone directories
• Train timetables
• Airline bookings
• Credit card details
• Student records
• Customer histories
• Stock market prices
• Discussion boards
• and so on…

Database Systems

• A database system consists of
 • Data (the database)
 • Software
 • Hardware
 • Users
• We focus mainly on the software
• Database systems allow users to
 • Store
 • Update
 • Retrieve
 • Organise
 • Protect
 • their data.

Database Users

• End users
 • Use the database system to achieve some goal
• Application developers
 • Write software to allow end users to interface with the database system
• Database Administrator (DBA)
 • Designs & manages the database system
• Database systems programmer
 • Writes the database software itself

Database Management Systems

• A database is a collection of information
• A database management system (DBMS) is the software that controls that information

Examples:
• Oracle
• DB2 (IBM)
• MS SQL Server
• MS Access
• Ingres
• PostgreSQL
• MySQL

Examples:
• Oracle
• DB2 (IBM)
• MS SQL Server
• MS Access
• Ingres
• PostgreSQL
• MySQL

What the DBMS does

• Provides users with
 • Data definition language (DDL)
 • Data manipulation language (DML)
 • Data control language (DCL)
 • Often these are all the same language
• DBMS provides
 • Persistence
 • Concurrency
 • Integrity
 • Security
 • Data independence
• Data Dictionary
 • Describes the database itself
Data Dictionary - Metadata

- The dictionary or catalog stores information about the database itself.
- This is data about data or 'metadata'.
- Almost every aspect of the DBMS uses the dictionary.

File Based Systems

- File based systems
 - Data is stored in files
 - Each file has a specific format
 - Programs that use these files depend on knowledge about that format

Relational Systems

- Problems with early databases
 - Navigating the records requires complex programs
 - There is minimal data independence
 - No theoretical foundations

- Then, in 1970, E. F. Codd wrote "A Relational Model of Data for Large Shared Databanks" and introduced the relational model.

Internal Level

- Deals with physical storage of data
 - Structure of records on disk - files, pages, blocks
 - Indexes and ordering of records
 - Used by database system programmers

ANSI/SPARC Architecture

- ANSI - American National Standards Institute
- SPARC - Standards Planning and Requirements Committee
- 1975 - proposed a framework for DBs

Relational Systems

- Information is stored as tuples or records in relations or tables
- There is a sound mathematical theory of relations
- Most modern DBMS are based on the relational model

- The relational model covers 3 areas:
 - Data structure
 - Data integrity
 - Data manipulation
 - More details in the next lecture...
Conceptual Level

- Deals with the organisation of the data as a whole
- Abstractions are used to remove unnecessary details of the internal level
- Used by DBAs and application programmers

Conceptual Schema
CREATE TABLE Employee (Name VARCHAR(25), Salary REAL, Dept_Name VARCHAR(10))

External Level

- Provides a view of the database tailored to a user
- Parts of the data may be hidden
- Data is presented in a useful form
- Used by end users and application programmers

External Schemas
Payroll: String Name double Salary
Personnel: char *Name char *Department

Mappings

- Mappings translate information from one level to the next
 - External/Conceptual
 - Conceptual/Internal
- These mappings provide data independence

- Physical data independence
 - Changes to internal level shouldn't affect conceptual level

- Logical data independence
 - Conceptual level changes shouldn't affect external levels

ANSI/SPARC Architecture

User 1
External View 1
External/Conceptual Mappings
External Schemas
Payroll: String Name double Salary
Personnel: char *Name char *Department
Conceptual Schema
Conceptual/Internal Mapping
Internal Schema

This Lecture in Exams

Describe the three levels of the ANSI/SPARC model. You should include information about what each level is for, which users might be interested in which levels, and how the levels relate to one another. (2004/05, 7 marks)

Explain what a data dictionary is, and give three examples of how one may be used in a relational database management system. (2003/04, 5 marks)

Next Lecture

The Relational Model
- Relational data structure
- Relational data integrity
- Relational data manipulation

For more information
- Connolly and Begg chapters 3 and 4
- E.F. Codd’s paper
 http://www.acm.org/classics/nov95/