'Modern' Databases

Database Systems Lecture 18
Natasha Alechina

In This Lecture

- 'Modern' Databases
- Distributed DBs
- Web-based DBs
- Object Oriented DBs
- Semistructured Data and XML
- Multimedia DBs

For more information
- Connolly and Begg chapters 22-28
- Ullman and Widom chapter 4

Other Sorts of DB

- We have looked mainly at relational databases
 - Relational model
 - SQL
 - Design techniques
 - Transactions
 - Many of these topics relied on relational concepts

- There are several other types of DB in use today
 - Distributed DBs
 - Object DBs
 - Multimedia DBs
 - Temporal DBs
 - Logic DBs

Distributed Databases

- A distributed DB system consists of several sites
 - Sites are connected by a network
 - Each site can hold data and process it
 - It shouldn't matter where the data is - the system is a single entity

- Distributed database management system (DBMS)
 - A DBMS (or set of them) to control the databases
 - Communication software to handle interaction between sites

Client/Server Architecture

- The client/server architecture is a general model for systems where a service is provided by one system (the server) to another (the client)

- Server
 - Hosts the DBMS and database
 - Stores the data

- Client
 - User programs that use the database
 - Use the server for database access

Distributed Databases

- A distributed DB system consists of several sites
 - Sites are connected by a network
 - Each site can hold data and process it
 - It shouldn't matter where the data is - the system is a single entity

- Distributed database management system (DBMS)
 - A DBMS (or set of them) to control the databases
 - Communication software to handle interaction between sites
Web-based Databases

- Database access over the internet
 - Web-based clients
 - Web server
 - Database server(s)
 - Web server serves pages to browsers (clients) and can access database(s)

- Typical operation
 - Client sends a request for a page to the web server
 - Web server sends SQL to database
 - The web server uses results to create page
 - The page is returned to the client

Web-based Databases

- Advantages
 - World-wide access
 - Internet protocols (HTTP, SSL, etc) give uniform access and security
 - Database structure is hidden from clients
 - Uses a familiar interface

- Disadvantages
 - Security can be a problem if you are not careful
 - Interface is less flexible using standard browsers
 - Limited interactivity over slow connections

Object Oriented Databases

- An object oriented database (OODB) is a collection of persistent objects
 - Objects - instances of a defined class
 - Persistent - object exist independently of any program

- An object oriented DBMS
 - Manages a collection of objects
 - Allows objects to be made persistent
 - Permits queries to be made of the objects
 - Does all the normal DBMS things as well

Object Oriented Databases

- Relational DBs
 - The database can't see data's internal structure so can't use complex data
 - Relational model gives a simple, and quite powerful, structure - but is quite rigid

- Object Oriented DBs
 - Use concepts from object oriented design/programming
 - OO concepts
 - Encapsulation
 - Inheritance
 - Polymorphism
 - OODBMS

Object Oriented Databases

- A OODB solution
 - We make an abstract Product class
 - Book, CD, and DVD are each a concrete subclass of Product
 - The database is a persistent collection of Products

- In lecture 10 we had a store with different sorts of products
 - Books
 - CDs
 - DVDs
 - This lead to missing data among the various types

OODB example
Object Oriented Databases

- **Advantages**
 - Good integration with Java, C++, etc.
 - Can store complex information
 - Fast to recover whole objects
 - Has the advantages of the (familiar) object paradigm

- **Disadvantages**
 - There is no underlying theory to match the relational model
 - Can be more complex and less efficient
 - OODB queries tend to be procedural, unlike SQL.

Object Relational Databases

- **Extend a RDBMS with object concepts**
 - Data values can be objects of arbitrary complexity
 - These objects have inheritance etc.
 - You can query the objects as well as the tables

- **An object relational database**
 - Retains most of the structure of the relational model
 - Needs extensions to query languages (SQL or relational algebra)

Semistructured Data

- **Semistructured Data**: A new data model designed to cope with problems of information integration.
- **XML**: A standard language for describing semistructured data schemas and representing data.

The Information-Integration Problem

- Related data exists in many places and could, in principle, work together.
- But different databases differ in:
 - Model (relational, object-oriented?).
 - Schema (normalised/ not normalized?).
 - Terminology: are consultants employees? Retirees? Subcontractors?
 - Conventions (meters versus feet?).
 - How do we model information residing in heterogeneous sources (if we cannot combine it all in a single new database)?

Example

- Suppose we are integrating information about bars in some town.
- Every bar has a database.
 - One may use a relational DBMS; another keeps the menu in an MS-Word document.
 - One stores the phones of distributors, another does not.
 - One distinguishes ales from other beers, another doesn’t.
 - One counts beer inventory by bottles, another by cases.
Semistructured Data

- **Purpose**: represent data from independent sources more flexibly than either relational or object-oriented models.
- Think of objects, but with the type of each object its own business, not that of its “class.”
- Labels to indicate meaning of substructures.
- Data is self-describing: structural information is part of the data.

Graphs of Semistructured Data

- **Nodes** = objects.
- **Labels on arcs**: attributes, relationships.
- Atomic values at leaf nodes (nodes with no arcs out).
- Flexibility: no restriction on:
 - Labels out of a node.
 - Number of successors with a given label.

Example: Data Graph

- The bar object for Joe’s Bar
- The beer object for Bud

XML

- **XML** = Extensible Markup Language.
- While HTML uses tags for formatting (e.g., “italic”), XML uses tags for semantics (e.g., “this is an address”).
- Key idea: create tag sets for a domain (e.g., bars), and translate all data into properly tagged XML documents.
- Well formed XML - XML which is syntactically correct; tags and their nesting totally arbitrary.
- Valid XML - XML which has DTD (document type definition); imposes some structure on the tags, but much more flexible than relational database schema.

Example: Well-Formed XML

```xml
<?xml version = "1.0" standalone = "yes" ?>
<BARS>
  <BAR><NAME>Joe's Bar</NAME>
  <BEER><NAME>Bud</NAME>
  <PRICE>2.50</PRICE></BEER>
  <BEER><NAME>Miller</NAME>
  <PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ... </BARS>
```
Example

• The `<BARS>` XML document is:

```
<NAME>Joe's Bar</NAME>
<BEER>Bud</BEER> 2.50
<BEER>Miller</BEER> 3.00
```

XPATH and XQUERY

• XPATH is a language for describing paths in XML documents.
 - Really think of the semistructured data graph and its paths.
 - Why do we need path description language: can't get at the data using just Relation.Attribute expressions.

• XQUERY is a full query language for XML documents with power similar to OQL (Object Query Language, query language for object-oriented databases).

Multimedia Databases

• Multimedia DBs can store complex information
 - Images
 - Music and audio
 - Video and animation
 - Full texts of books
 - Web pages

• They can be used in a wide range of application areas
 - Entertainment
 - Marketing
 - Medical imaging
 - Digital publishing
 - Geographic Information Systems

Querying Multimedia DBs

• Metadata searches
 - Information about the multimedia data (metadata) is stored
 - This can be kept in a standard relational database and queried normally
 - Limited by the amount of metadata available

• Content searches
 - The multimedia data is searched directly
 - Potential for much more flexible search
 - Depends on the type of data being used
 - Often difficult to determine what the 'correct' results are

Metadata Searches

• Example - indexing films we might store
 - Title
 - Year
 - Genre(s)
 - Actor(s)
 - Director(s)
 - Producer(s)

• We can then search for things like
 - Films starring Kevin Spacey
 - Films directed by Peter Jackson
 - Dramas produced in 2000

• We don't actually search the films

• Advantages
 - Metadata can be structured in a traditional DBMS
 - Metadata is generally concise and so efficient to store
 - Metadata enriches the content

• Disadvantages
 - Metadata can't always be found automatically, and so requires data entry
 - It restricts the sorts of queries that can be made
Content Searches

- An alternative to metadata is to search the content directly.
 - Multimedia is less structured than metadata.
 - It is a richer source of information but harder to process.

Example of content-based retrieval:

- Find images similar to a given sample.
- Hum a tune and find out what it is.
- Search for features, such as cuts or transitions in films.

Content-Based Retrieval

- QBIC™ (Query By Image Content) from IBM - searches for images having similar colour or layout.
 - [QBIC Demo](http://www.qbic.almaden.ibm.com/cgi-bin/stamps-demo)

Content-Based Retrieval

- Image retrieval is hard.
 - It is often not clear when two images are "similar".
 - Image interpretation is unsolved and expensive.
 - Different people expect different things.

Do we look for?

- Images of roses.
- Images of red things?
- Images of flowers?
- Images of red flowers?
- Images of red roses?

Other Topics

- Temporal DBs
 - Storing data that changes over time.
 - Can ask about the history of the DB rather than just the current state.
 - System time vs real time.

- Logic DBs
 - A database is a set of facts and rules for manipulating them (like a Prolog program).
 - The DBMS maintains and controls these facts and rules.
 - A "query" is made by applying the rules to the facts.

Next week

- Monday 9-10: Revision and module evaluation lecture.
- Wednesday 12-1: Java and SQL lecture (optional – not in the exam).
- If you have suggestions for revision questions, please email me!