Introduction to Database Systems

Database Systems Lecture 1
Natasha Alechina
www.cs.nott.ac.uk/~nza/G51DBS

In this Lecture

- Course Information
- Databases and Database Systems
- Some History
- The Relational Model

For more information

- Connolly and Begg – Chapters 1 and 2
- Ullman and Widom (2ed.) – Chapter 1
- The module website
 www.cs.nott.ac.uk/~nza/G51DBS/

Course Information

- **Contact details**
 Natasha Alechina
 nza@cs.nott.ac.uk
 Office: B50

- **Lectures**
 - Mondays at 9 (sorry, not my fault) LT2
 - Wednesdays at 12 in LT3
 - Labs Wednesday 9-11 starting 13 February

- **Assessment**
 - 25% Coursework
 - Some lab-marked exercises
 - A written exercise with a database design
 - 75% Examination
 - 2 hour written exam
 - Answer 3 out of 5 questions
 - Format similar to last years’ G51DBS and G52DBS before that.

Textbook

- **Recommended textbooks:**
 - ‘Database Systems: A practical approach to design, implementation and management’ by Connolly and Begg
 - ‘A first course in database systems’ by Ullman and Widom.

- **Other textbooks:**
 - There are lots of database texts
 - Most of them would be fine also

- **For example:**
 - ‘Database Systems’ by CJ Date

Course Overview

- **Several main topics**
 - Database systems
 - Data models
 - Database design
 - SQL
 - Transactions
 - Concurrency
 - Administration

- **Practical sessions**
 - Will start on 13 February
 - SQL
 - creating a database
 - querying a database

Why Study Databases?

- **Databases are useful**
 - Many computing applications deal with large amounts of information
 - Database systems give a set of tools for storing, searching and managing this information

- **Databases in CS**
 - Databases are a ‘core topic’ in computer science
 - Basic concepts and skills with database systems are part of the skill set you will be assumed to have as a CS graduate
What is a Database?

- "A set of information held in a computer" - Oxford English Dictionary
- "One or more large structured sets of persistent data, usually associated with software to update and query the data" - Free On-Line Dictionary of Computing
- "A collection of data arranged for ease and speed of search and retrieval" - Dictionary.com

Databases

- Web indexes
- Library catalogues
- Medical records
- Bank accounts
- Stock control
- Personnel systems
- Product catalogues
- Telephone directories
- Train timetables
- Airline bookings
- Credit card details
- Student records
- Customer histories
- Stock market prices
- Discussion boards
- and so on...

Database Systems

- A database system consists of:
 - Data (the database)
 - Software
 - Hardware
 - Users
- We focus mainly on the software
- Database systems allow users to:
 - Store
 - Update
 - Retrieve
 - Organise
 - Protect their data.

Database Users

- End users:
 - Use the database system to achieve some goal
- Application developers:
 - Write software to allow end users to interface with the database system
- Database Administrator (DBA):
 - Designs & manages the database system
- Database systems programmer:
 - Writes the database software itself

Database Management Systems

- A database is a collection of information
- A database management system (DBMS) is the software than controls that information
- Examples:
 - Oracle
 - DB2 (IBM)
 - MS SQL Server
 - MS Access
 - Ingres
 - PostgreSQL
 - MySQL

What the DBMS does

- Provides users with:
 - Data definition language (DDL)
 - Data manipulation language (DML)
 - Data control language (DCL)
 - Often these are all the same language
- DBMS provides:
 - Persistence
 - Concurrency
 - Integrity
 - Security
 - Data independence
- Data Dictionary:
 - Describes the database itself
Data Dictionary - Metadata

- The dictionary or catalog stores information about the database itself
- This is data about data or ‘metadata’
- Almost every aspect of the DBMS uses the dictionary
- The dictionary holds:
 - Descriptions of database objects (tables, users, rules, views, indexes, …)
 - Information about who is using which data (locks)
 - Schemas and mappings

File Based Systems

- File based systems
 - Data is stored in files
 - Each file has a specific format
 - Programs that use these files depend on knowledge about that format
- Problems:
 - No standards
 - Data duplication
 - Data dependence
 - No way to generate ad hoc queries
 - No provision for security, recovery, concurrency, etc.

Relational Systems

- Problems with early databases
 - Navigating the records requires complex programs
 - There is minimal data independence
 - No theoretical foundations
- Then, in 1970, E. F. Codd wrote “A Relational Model of Data for Large Shared Databanks” and introduced the relational model
- Information is stored as tuples or records in relations or tables
- There is a sound mathematical theory of relations
- Most modern DBMS are based on the relational model
- The relational model covers 3 areas:
 - Data structure
 - Data integrity
 - Data manipulation
- More details in the next lecture…

ANSI/SPARC Architecture

- ANSI - American National Standards Institute
- SPARC - Standards Planning and Requirements Committee
- 1975 - proposed a framework for DBs
- A three-level architecture
 - Internal level: For systems designers
 - Conceptual level: For database designers and administrators
 - External level: For database users

Internal Level

- Deals with physical storage of data
 - Structure of records on disk - files, pages, blocks
 - Indexes and ordering of records
 - Used by database system programmers
- Internal Schema
 - Record EMP
 - LENGTH=44
 - HEADER: BYTE(5) OFFSET=0
 - NAME: BYTE(25) OFFSET=5
 - SALARY: FULLWORD OFFSET=30
 - DEPT: BYTE(10) OFFSET=34
Conceptual Level

• Deals with the organisation of the data as a whole
• Abstractions are used to remove unnecessary details of the internal level
• Used by DBAs and application programmers

Conceptual Schema
CREATE TABLE Employee (Name VARCHAR(25), Salary REAL, Dept_Name VARCHAR(10))

External Level

• Provides a view of the database tailored to a user
• Parts of the data may be hidden
• Data is presented in a useful form
• Used by end users and application programmers

External Schemas
Payroll:
String Name
double Salary
Personnel:
char *Name
char *Department

Mappings

• Mappings translate information from one level to the next
 • External/Conceptual
 • Conceptual/Internal
• These mappings provide data independence

• Physical data independence
 • Changes to internal level shouldn’t affect conceptual level

• Logical data independence
 • Conceptual level changes shouldn’t affect external levels

ANSI/SPARC Architecture

This Lecture in Exams

• Describe the three levels of the ANSI/SPARC model. You should include information about what each level is for, which users might be interested in which levels, and how the levels relate to one another. (2004/05, 7 marks)

Next Lecture

The Relational Model

• Relational data structure
• Relational data integrity
• Relational data manipulation

For more information
• Connelly and Begg chapters 3 and 4
• Ullman and Widom (2 ed.) Chapter 3.1, 5.1
• E.F. Codd’s paper
 (there is a link on last year’s G51DBS webpage)