In This Lecture

• 'Modern' Databases
 • Distributed DBs
 • Web-based DBs
 • Object Oriented DBs
 • Semistructured Data and XML
 • Multimedia DBs

• For more information
 • Connolly and Begg chapters 22-28
 • Ullman and Widom chapter 4
Other Sorts of DB

- We have looked mainly at relational databases
 - Relational model
 - SQL
 - Design techniques
 - Transactions
- Many of these topics relied on relational concepts

- There are several other types of DB in use today
 - Distributed DBs
 - Object DBs
 - Multimedia DBs
 - Temporal DBs
 - Logic DBs

'Modern' Databases
Distributed Databases

- A distributed DB system consists of several sites
 - Sites are connected by a network
 - Each site can hold data and process it
 - It shouldn’t matter where the data is - the system is a single entity

- Distributed database management system (DDBMS)
 - A DBMS (or set of them) to control the databases
 - Communication software to handle interaction between sites

'Modern' Databases
Modern Databases

Client/Server Architecture

- The client/server architecture is a general model for systems where a service is provided by one system (the server) to another (the client)

- Server
 - Hosts the DBMS and database
 - Stores the data

- Client
 - User programs that use the database
 - Use the server for database access

'Modern' Databases
Web-based Databases

- Database access over the internet
 - Web-based clients
 - Web server
 - Database server(s)
- Web server serves pages to browsers (clients) and can access database(s)

- Typical operation
 - Client sends a request for a page to the web server
 - Web server sends SQL to database
 - The web server uses results to create page
 - The page is returned to the client
Web-based Databases

Client (Browser) ➔ HTTP request ➔ Web Server ➔ SQL query ➔ Database Server ➔ SQL result ➔ HTML page ➔ Client (Browser)

Modern Databases
Web-based Databases

• Advantages
 • World-wide access
 • Internet protocols (HTTP, SSL, etc) give uniform access and security
 • Database structure is hidden from clients
 • Uses a familiar interface

• Disadvantages
 • Security can be a problem if you are not careful
 • Interface is less flexible using standard browsers
 • Limited interactivity over slow connections

'Modern' Databases
• Relational DBs
 • The database can’t see data’s internal structure so can’t use complex data
 • Relational model gives a simple, and quite powerful, structure - but is quite rigid

• Object Oriented DBs
 • Use concepts from object oriented design/programming
 • OO concepts
 • Encapsulation
 • Inheritance
 • Polymorphism
 • OODBMS

'Modern' Databases
Object Oriented Databases

- An object oriented database (OODB) is a collection of persistent objects
 - Objects - instances of a defined class
 - Persistent - object exist independently of any program

- An object oriented DBMS
 - Manages a collection of objects
 - Allows objects to be made persistent
 - Permits queries to be made of the objects
 - Does all the normal DBMS things as well

'Modern' Databases
OODB example

- In lecture 10 we had a store with different sorts of products
 - Books
 - CDs
 - DVDs
- This lead to missing data among the various types

- OODB solution
 - We make an abstract Product class
 - Book, CD, and DVD are each a concrete subclass of Product
 - The database is a persistent collection of Products

'Modern' Databases
OODEB Example

- Product is abstract
 - You cannot make a Product directly
 - You can, however, make a Book, CD, or DVD, and these are Products
Object Oriented Databases

- Advantages
 - Good integration with Java, C++, etc
 - Can store complex information
 - Fast to recover whole objects
 - Has the advantages of the (familiar) object paradigm

- Disadvantages
 - There is no underlying theory to match the relational model
 - Can be more complex and less efficient
 - OODB queries tend to be procedural, unlike SQL
Object Relational Databases

- Extend a RDBMS with object concepts
 - Data values can be objects of arbitrary complexity
 - These objects have inheritance etc.
 - You can query the objects as well as the tables

- An object relational database
 - Retains most of the structure of the relational model
 - Needs extensions to query languages (SQL or relational algebra)
Semistructured data

- Semistructured Data: A new data model designed to cope with problems of information integration.
- XML: A standard language for describing semistructured data schemas and representing data.
The Information-Integration Problem

- Related data exists in many places and could, in principle, work together.
- But different databases differ in:
 - Model (relational, object-oriented?).
 - Schema (normalised/ not normalized?).
 - Terminology: are consultants employees? Retirees? Subcontractors?
 - Conventions (meters versus feet?).
- How do we model information residing in heterogeneous sources (if we cannot combine it all in a single new database)?

'Modern' Databases
Example

• Suppose we are integrating information about bars in some town.
• Every bar has a database.
 • One may use a relational DBMS; another keeps the menu in an MS-Word document.
 • One stores the phones of distributors, another does not.
 • One distinguishes ales from other beers, another doesn’t.
 • One counts beer inventory by bottles, another by cases.
Semistructured Data

- Purpose: represent data from independent sources more flexibly than either relational or object-oriented models.
- Think of objects, but with the type of each object its own business, not that of its “class.”
- Labels to indicate meaning of substructures.
- Data is self-describing: structural information is part of the data.
Graphs of Semistructured Data

- Nodes = objects.
- Labels on arcs (attributes, relationships).
- Atomic values at leaf nodes (nodes with no arcs out).
- Flexibility: no restriction on:
 - Labels out of a node.
 - Number of successors with a given label.
Example: Data Graph

Notice a new kind of data.

The beer object for Bud

The bar object for Joe’s Bar

'Modern' Databases
XML

- XML = Extensible Markup Language.
- While HTML uses tags for formatting (e.g., “italic”), XML uses tags for semantics (e.g., “this is an address”).
- Key idea: create tag sets for a domain (e.g., bars), and translate all data into properly tagged XML documents.
- Well formed XML - XML which is syntactically correct; tags and their nesting totally arbitrary.
- Valid XML - XML which has DTD (document type definition); imposes some structure on the tags, but much more flexible than relational database schema.
XML and Semistructured Data

- Well-Formed XML with nested tags is exactly the same idea as trees of semistructured data.
- XML also enables non-tree structures (with references to IDs of nodes), as does the semistructured data model.
Example: Well-Formed XML

<? XML VERSION = "1.0" STANDALONE = "yes" ?>
<BARS>
 <BAR><NAME>Joe’s Bar</NAME>
 <BEER><NAME>Bud</NAME>
 <PRICE>2.50</PRICE></BEER>
 <BEER><NAME>Miller</NAME>
 <PRICE>3.00</PRICE></BEER>
 </BAR>
 <BAR> ...
</BARS>
Example
XPATH and XQUERY

- XPATH is a language for describing paths in XML documents.
 - Really think of the semistructured data graph and its paths.
 - Why do we need path description language: can’t get at the data using just Relation.Attribute expressions.
- XQUERY is a full query language for XML documents with power similar to OQL (Object Query Language, query language for object-oriented databases).
Multimedia Databases

- Multimedia DBs can store complex information
 - Images
 - Music and audio
 - Video and animation
 - Full texts of books
 - Web pages

- They can be used in a wide range of application areas
 - Entertainment
 - Marketing
 - Medical imaging
 - Digital publishing
 - Geographic Information Systems

'Modern' Databases
Querying Multimedia DBs

- **Metadata searches**
 - Information about the multimedia data (metadata) is stored
 - This can be kept in a standard relational database and queried normally
 - Limited by the amount of metadata available

- **Content searches**
 - The multimedia data is searched directly
 - Potential for much more flexible search
 - Depends on the type of data being used
 - Often difficult to determine what the ‘correct’ results are
Modern Databases

Metadata Searches

Example - indexing films we might store

We can then search for things like:

- Films directed by Peter Jackson
- Films starring Kevin Spacey
- Dramas produced in 2000
- Films directed by
- Producer(s)
- Director(s)
- Actor(s)
- Genre(s)
- Year
- Title
- Title

We don't actually search the films
Metadata Searches

• **Advantages**
 - Metadata can be structured in a traditional DBMS
 - Metadata is generally concise and so efficient to store
 - Metadata enriches the content

• **Disadvantages**
 - Metadata can’t always be found automatically, and so requires data entry
 - It restricts the sorts of queries that can be made
Content Searches

• An alternative to metadata is to search the content directly
 • Multimedia is less structured than metadata
 • It is a richer source of information but harder to process

• Example of content based retrieval
 • Find images similar to a given sample
 • Hum a tune and find out what it is
 • Search for features, such as cuts or transitions in films

'Modern' Databases
Content-Based Retrieval

QBIC™ (Query By Image Content) from IBM - searches for images having similar colour or layout

'Modern' Databases

http://wwwqbic.almaden.ibm.com/cgi-bin/stamps-demo
Content-Based Retrieval

- Image retrieval is hard
 - It is often not clear when two images are ‘similar’
 - Image interpretation is unsolved and expensive
 - Different people expect different things

- Do we look for?
 - Images of roses
 - Images of red things?
 - Images of flowers?
 - Images of red flowers?
 - Images of red roses?
Other Topics

- Temporal DBs
 - Storing data that changes over time
 - Can ask about the history of the DB rather than just the current state
 - System time vs real time

- Logic DBs
 - A database is a set of facts and rules for manipulating them (like a Prolog program)
 - The DBMS maintains and controls these facts and rules
 - A ‘query’ is made by applying the rules to the facts

'Modern' Databases
Next week

- Wednesday 12-1: Revision and module evaluation lecture
- If you have suggestions for revision questions, please email me!
- Monday the 28th 9-10: Java and SQL lecture (optional – not in the exam)