Introduction to Database Systems
Database Systems Lecture 1
Natasha Alechina
www.cs.nott.ac.uk/~nza/G51DBS

In this Lecture
- Course Information
- Databases and Database Systems
- Some History
- The Relational Model
For more information
- Connolly and Begg – Chapters 1 and 2
- Ullman and Widom (2ed.) – Chapter 1
- The module website
 www.cs.nott.ac.uk/~nza/G51DBS/

Course Overview
- Several main topics
 - Database systems
 - Data models
 - Database design
 - SQL
 - Transactions
 - Concurrency
 - Administration
- Practical sessions
 - will start on 18 February
 - SQL
 - creating a database
 - querying a database

Why Study Databases?
- Databases are useful
 - Many computing applications deal with large amounts of information
 - Database systems give a set of tools for storing, searching and managing this information
- Databases in CS
 - Databases are a ‘core topic’ in computer science
 - Basic concepts and skills with database systems are part of the skill set you will be assumed to have as a CS graduate

Course Information
- Contact details
 - Natasha Alechina
 - nza@cs.nott.ac.uk
 - Office: C13
- Lectures
 - Wednesdays 9-10 in LT3
 - Fridays 14-15 in JBSouth-B52
 - Labs Wednesday 10-12 starting 18 February
- Assessment
 - 25% Coursework
 - 3 lab-marked exercises
 - 2 written exercises each worth 5%
 - 75% Examination
 - 2 hour written exam
 - Answer 3 out of 5 questions
 - Format similar to previous G51DBS and to G52DBS before that.

Textbook
- Recommended textbooks:
 - 'Database Systems: A practical approach to design, implementation and management' by Connolly and Begg
 - 'A first course in database systems' by Ullman and Widom.
- Other textbooks:
 - There are lots of database texts
 - Most of them would be fine also
- For example:
 - 'Database Systems' by CJ Date
What is a Database?

• “A set of information held in a computer”
 Oxford English Dictionary
• “One or more large structured sets of persistent data, usually associated with software to update and query the data”
 Free On-Line Dictionary of Computing
• “A collection of data arranged for ease and speed of search and retrieval”
 Dictionary.com

Databases

• Web indexes
• Library catalogues
• Medical records
• Bank accounts
• Stock control
• Personnel systems
• Product catalogues
• Telephone directories
• Train timetables
• Airline bookings
• Credit card details
• Student records
• Customer histories
• Stock market prices
• Discussion boards
• and so on...

Database Systems

• A database system consists of
 • Data (the database)
 • Software
 • Hardware
 • Users
• We focus mainly on the software
• Database systems allow users to
 • Store
 • Update
 • Retrieve
 • Organise
 • Protect their data.

Database Users

• End users
 • Use the database system to achieve some goal
 • Application developers
 • Write software to allow end users to interface with the database system
• Database Administrator (DBA)
 • Designs & manages the database system
 • Database systems programmer
 • Writes the database software itself

Database Management Systems

• A database is a collection of information
• A database management system (DBMS) is the software that controls that information
• Examples:
 • Oracle
 • DB2 (IBM)
 • MS SQL Server
 • MS Access
 • Ingres
 • PostgreSQL
 • MySQL

What the DBMS does

• Provides users with
 • Data definition language (DDL)
 • Data manipulation language (DML)
 • Data control language (DCL)
 • Often these are all the same language
• DBMS provides
 • Persistence
 • Concurrency
 • Integrity
 • Security
 • Data independence
• Data Dictionary
 • Describes the database itself
Data Dictionary - Metadata
- The dictionary or catalog stores information about the database itself.
- This is data about data or ‘metadata’.
- Almost every aspect of the DBMS uses the dictionary.
- The dictionary holds descriptions of database objects (tables, users, rules, views, indexes,...).
- Information about who is using which data (locks).
- Schemas and mappings.

File Based Systems
- File based systems:
 - Data is stored in files.
 - Each file has a specific format.
 - Programs that use these files depend on knowledge about that format.
- Problems:
 - No standards.
 - Data duplication.
 - Data dependence.
 - No way to generate ad hoc queries.
 - No provision for security, recovery, concurrency, etc.

Relational Systems
- Problems with early databases:
 - Navigating the records requires complex programs.
 - There is minimal data independence.
 - No theoretical foundations.
- Then, in 1970, E. F. Codd wrote "A Relational Model of Data for Large Shared Databanks" and introduced the relational model.
- Information is stored as tuples or records in relations or tables.
- There is a sound mathematical theory of relations.
- Most modern DBMS are based on the relational model.
- The relational model covers 3 areas:
 - Data structure.
 - Data integrity.
 - Data manipulation.
- More details in the next lecture...

ANSI/SPARC Architecture
- SPARC - Standards Planning and Requirements Committee.
- 1975 - proposed a framework for DBs.
- A three-level architecture:
 - Internal level: For systems designers.
 - Conceptual level: For database designers and administrators.
 - External level: For database users.

Internal Level
- Deals with physical storage of data:
 - Structure of records on disk - files, pages, blocks.
 - Indexes and ordering of records.
 - Used by database system programmers.
- Internal Schema:
 - RECORD_EMP LENGTH=44
 - HEADER: BYTE(5) OFFSET=0
 - NAME: BYTE(25) OFFSET=5
 - SALARY: FULLWORD OFFSET=30
 - DEPT: BYTE(10) OFFSET=34.
Conceptual Level
- Deals with the organisation of the data as a whole
- Abstractions are used to remove unnecessary details of the internal level
- Used by DBAs and application programmers

Conceptual Schema
```sql
CREATE TABLE Employee
(Name VARCHAR(25),
Salary REAL,
Dept_Name VARCHAR(10))
```

External Level
- Provides a view of the database tailored to a user
- Parts of the data may be hidden
- Data is presented in a useful form
- Used by end users and application programmers

External Schemas
- Payroll:
 String Name
double Salary
- Personnel:
 char *Name
char *Department

Mappings
- Mappings translate information from one level to the next
 - External/Conceptual
 - Conceptual/Internal
- These mappings provide data independence
- Physical data independence
 - Changes to internal level shouldn’t affect conceptual level
- Logical data independence
 - Conceptual level changes shouldn’t affect external levels

ANSI/SPARC Architecture
![ANSI/SPARC Architecture Diagram]

This Lecture in Exams
- Describe the three levels of the ANSI/SPARC model. You should include information about what each level is for, which users might be interested in which levels, and how the levels relate to one another. (2004/05, 7 marks)

Next Lecture
The Relational Model
- Relational data structure
- Relational data integrity
- Relational data manipulation

For more information:
- Connolly and Begg chapters 3 and 4
- Ullman and Widom (2 ed.) Chapter 3.1, 5.1
- E.F. Codd’s paper
 (there is a link on G51DBS webpage)