
1

G51PRG:
Introduction to Programming

Second semester
Lecture 6

Natasha Alechina

School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 6: Abstraction 2

Previous lecture

• final keyword

• Casting objects

• More on polymorphism

• Object class

Lecture 6: Abstraction 3

Example of usefulness of Object data
type
• So far I talked a lot about how useful it is to have

everything extending Object, and being able to use
polymorphism and to cast objects….

• Here is a little example of how this is actually used.

• Hash table is a very useful data structure. Hashtable class
is part of Java class libraries.

• Hashtables store any kind of Objects.

• So, there is just one Hashtable class which can be used in
programs which need to store various kinds of objects.

Lecture 6: Abstraction 4

Hashtable class

• Hash table holds data items indexed by keys .

• Key is used to access the value, just as an array index is
used to access the corresponding element in the array.

• Hash table keys can be of any reference type (for example,
Strings).

hash(key1) (key1, value1)

hash(key2) (key2, value2)

Lecture 6: Abstraction 5

Example

hash(“john”) (john, 9150001)

hash(“adam”) (adam, 9510010)

indices

buckets: lists of
(key,value) pairs

Lecture 6: Abstraction 6

Hashtable methods

• Object put(Object key, Object value)

• Object get(Object key) - returns the value

• boolean containsKey(Object key) - returns
true or false depending on whether there is an item with
such key in the table

• boolean containsValue(Object value) -
returns true or false depending on whether there is such a
value in the table

• Object remove(Object key) - removes item
with the specified key

2

Lecture 6: Abstraction 7

Example Hashtable

Hashtable telephones = new Hashtable();

// put some telephones in a table

telephones.put(“john”, “9150001”);

telephones.put(“adam”, “9510010”);

String tel1 =

(String) telephones.get(“john”);

// will return John’s telephone number

// note that get() returns an Object so

// need to cast to String!

Lecture 6: Abstraction 8

What about storing basic types?

• The trouble with Java Collections (such as Hashtable) is
that they are designed to store Objects.

• Hashtable works with any objects: Strings, Points,
Persons,… . But it does not have methods to store integers
or doubles.

• There is a workaround though - you can use Wrapper
classes.

Lecture 6: Abstraction 9

Envelopes, or wrapper classes

• We can’t cast between basic types and objects.

• What do we do if we need to use a basic type where an
object is required?

• Define a new class and put the basic type value inside it as
a field. That's what "wrappers" or "envelopes” do: make an
object out of a basic type.

• There are Java classes for all basic types: byte, float and so
on: Boolean, Character, Byte, Short, Integer, Long, Float,
Double.

Lecture 6: Abstraction 10

Two purposes of wrapper classes

• Make it possible to use basic types with classes which
handle objects. For example, we cannot store ints or use
them as keys in Hashtable, but can store an object of type
Integer.

• Provide home for useful methods associated with the basic
type. For example, Integer class has method

static int parseInt(String s)

• which given a string “2002” returns number 2002.

Lecture 6: Abstraction 11

Some common methods of wrapper
classes
• A constructor which takes the primitive type and creates an

object of the type class (e.g. Character(char c));

• xxxxValue() (where xxxx is the primitive type, e.g.
Character.charValue() and
Boolean.booleanValue()) returns the value of the
basic type stored in the object.

Lecture 6: Abstraction 12

Telephone example

• If we wanted to store telephones as ints:

Hashtable tels = new Hashtable();

tels.put(“john”, new Integer(9150001));

tels.put(“adam”, new Integer(9510010));

• Which way to get tel number as an int is correct?

int tel1 = (tels.get(“john”)).intValue();

int tel2 = (Integer) tels.get(“john”);

int tel3 =

((Integer) tels.get(“john”)).intValue();

3

Lecture 6: Abstraction 13

Abstract classes and interfaces

• There are many more useful data structures in Java class
libraries.

• They are organised in a hierarchy of classes.

• Before I can really explain how they work I need to
introduce abstract classes and interfaces in Java.

Lecture 6: Abstraction 14

Abstract methods

• Sometimes when defining a class one wants to guarantee
that a certain method exists but cannot provide
implementation for this method which would work for all
classes extending the given one.

• A method can be declared as abstract without providing
implementation.

Lecture 6: Abstraction 15

Example: Number class

• The abstract class Number is the superclass of classes
Byte, Double, Float, Integer, Long, and Short.

• Subclasses of Number must provide methods
doubleValue(), floatValue(), intValue(), longValue() to
convert the represented numeric value to double, float, int,
and long. These methods are declared abstract in Number.

• You just assume that each Number can be converted to
double, float, etc. but for each particular type those
methods will be different.

Lecture 6: Abstraction 16

Abstract class

• A class which contains abstract methods must be declared
abstract .

• It is not possible to create instances of an abstract class.
• A class which does not contain abstract methods can also

be declared abstract. This is done to make it impossible to
create instances of a class.

• Abstract classes are used to keep the relevant code together
at the right place in the class hierarchy, and make it easier
to define subclasses.

• Every concrete (non-abstract) class which extends an
abstract class should provide implementation for all
abstract methods.

Lecture 6: Abstraction 17

Example: Benchmark class

• Taken from Arnold and Gosling.
• Implementation of the benchmark() method depends on the

code to be tested.
abstract class Benchmark {

 abstract void benchmark();

 public long repeat(int count){

 long start = System.currentTimeMillis();

 for (int i = 0; i < count; i++){

 benchmark();

 }

 long finish = System.currentTimeMillis();

 return ((finish - start)/count);

 }}
Lecture 6: Abstraction 18

Interfaces

• Do not confuse them with interfaces in the sense of
graphical user interfaces!

• An interface is a type which contains only abstract
methods and related constants, classes and interfaces.

• Any class which implements an interface is guaranteed to
provide its methods.

• Interfaces provide only design whereas classes provide
both design and implementation.

• Instances of a class which implements an interface I can be
treated as being of type I.

• A class can implement several different interfaces (a bit of
multiple inheritance through the back door).

4

Lecture 6: Abstraction 19

Members of an interface

• Methods are always abstract (no implementation), so
abstract keyword is omitted.

• Methods are always public.

• Methods are never static, because static methods are class-
specific.

• Fields are always static and final (constants used to define
methods).

Lecture 6: Abstraction 20

Interfaces and classes

• Interfaces are in many respects similar to classes.

• Interfaces are types; an object can be declared to be of type
I, where I is an interface.

• Interfaces have members, just as classes do.

• Interface can extend another interface.

• Main difference is: interfaces cannot be instantiated, and
they are more abstract than abstract classes.

Lecture 6: Abstraction 21

Example: Java Collections (part of)

Collection interface

List interfaceSet interface AbstractCollection
(abstract) class

AbstractList (abstract) class
AbstractSequentialList
abstract class

Vector class ArrayList class
LinkedList class

Lecture 6: Abstraction 22

Example: Java Collections

• Methods all Collections must implement: add(Object o);
contains(Object o); remove(Object o); size();...

• Methods all Lists must implement: indexOf(Object o);
Object get(int index);...

• AbstractList - abstract class to extend when implementing
an array-type (random access to any index) list. Some
methods (to support iteration through the list) already
implemented using abstract methods get(int index) and
size().

• AbstractSequentialList - abstract class to extend when
implementing a list with sequential access (starting at the
head of the list and visiting elements in sequence). Here
get() and set() implemented, iterator() and size() abstract.

Lecture 6: Abstraction 23

Why is it useful to implement List

• Some utility methods exist which work for all Collections.
• For example, a method which can sort any data structure of

type List.
• Not a separate sorting method for Vectors, a separate

method for ArrayLists, a separate method for LinkedLists,
but a method for any class implementing List.

• In general utility methods for Collections are held in a
class from java.util package (need to import it this package
to use Colections!). The class is called Collections.

Lecture 6: Abstraction 24

Java.util.Collections.sort(List list)

• public static void sort(List list)

This method sorts elements in the list in ascending order
using natural ordering of elements in the list.

• If we are sorting a list of numbers, we know what natural
ordering means: the less than relation <.

• What do we do about an arbitrary list of arbitrary things?
How do we compare them and decide which one should be
before the other?

• In order for the method to work, things in the list must be
guaranteed to implement compareTo() method.

• They way to achieve this in Java is to require that they
implement Comparable interface.

5

Lecture 6: Abstraction 25

Comparable interface

• public int compareTo(Object o)

• This is the only method in this interface.
• It returns a negative integer if current object is before o in

the natural order, 0 if they are the same, and positive
integer if it is after o.

• Strings implement Comparable (compareTo() supports
lexicographic ordering of Strings).

• Numbers implement Comparable (compareTo() supports
ordering of numbers).

Lecture 6: Abstraction 26

Example: Integers

public int compareTo(Object o){

 return (this.intValue() -

 ((Integer) o).intValue());

}

• This is how we could have implemented compareTo() for
Integers.

• Note that we need to cast o to Integer.
• Often people return -1 if this object is less than o, 0 if they

are the same, 1 if this is greater than o.

Lecture 6: Abstraction 27

Example: sorting a Vector

For any objects which implement Comparable, in this case
Integers:

Vector myVector = new Vector();

myVector.add(new Integer(5));

myVector.add(new Integer(3));

myVector.add(new Integer(7));

Collections.sort(myVector);

// now myVector is sorted in natural

// order of Integers

Lecture 6: Abstraction 28

Example: iterating through a Vector

• Here is a simple minded iteration not using an
Iterator object.

Vector myVector = new Vector();

myVector.add(new Integer(5));...

for(int i = 0; i < myVector.size(); i++){

 System.out.println(

 ((Integer)myVector.get(i)).intValue());

}

Lecture 6: Abstraction 29

Summary and further reading

• Abstract classes and interfaces allow Java programmers to
implement methods at the right place in the class hierarchy
and re-use code.

• I covered general principles of extending classes,
implementing interfaces, and using methods
polymorphically, but only a tip of the iceberg in Collection
classes and other library methods.

• If you are interested look at Iterators and Comparators.

• For class hierarchies and interfaces, read
http://java.sun.com/docs/books/tutorial/java/javaOO/subclasses.html

http://java.sun.com/docs/books/tutorial/java/interpack/interfaces.html

